
• UNISYS A Series
Task Management
Programming
Guide

Release 3.9.0

Priced Item

September 1991

Printed in U S America
86000494-000

• UNISYS Prod uct Information
Announcement

o New Release 0 Revision • Update 0 New Mail Code

Title

A Series Task Management Programming Guide

This Product Information Announcement announces Update 1 to the September 1991 publication of the A Series
Task Management Programming Guide. The update is relative to the Mark 4.0.0 System Software Release, dated
July 1992.

The major changes described in this update to the reference manual are the following:

• Tasking security status

This new category of security status enables a program to execute with most of the privileges of a message
control system (MCS), without actually being an MCS.

• CALLCHECKPOI NT

User programs can now initiate a checkpoint by invoking the exported MCP procedure CALLCHECKPOINT. The
CALLCHECKPOINT procedure is available to user programs written in all the languages that support libraries.

• OSI remote tasking

A Series remote tasking is now supported across Open Systems Interconnection (OSI) networks.

• MP (Mark Program) system command

This system command has been extended to replace the functions of the CP (Control Program), MC (Make
Compiler), and PP (Privileged Program) system commands.

• C libraries

It is now possible to specify whether a C library has a temporary or permanent freeze. Further, it is now possible
to pass parameters of ALGOL type Boolean to a C library parameter of type int.

• Library usage

The Y (Status Interrogate) system command now displays the user programs linked to a library. A program can
obtain the same information through a new form of the type 0 (Mix Entries) GETSTATUS call.

• Test and Debug System (TAOS)

TAOS is now provided for the C and COBOL85 programming languages.

Various technical changes have been made to improve the quality and usability of the document.

Remove

iii through iv
xiii through xxiv
3-5 th rough 3-6

Announcement only:

Insert

iii through iv
xiii through xxiv
3-5 through 3-6

Announcement and attachments:

AS199

continued

System: A Series
Release: Mark 4.0.0 July 1992

Part number: 86000494-010

Remove

3-15 through 3-16
4-1 through 4-2

4-3 through 4-4
5-3 through 5-4

5-5 th rough 5-6
5-9 through 5-10
5-13 through 5-18
6-5 through 6-6
6-11 through 6-16
7-1 through 7-6
8-3 through 8-4
9-9 through 9-10

10-5 through 10-6
10-13 through 10-16

11-1 through 11-10

11-15 through 11-20
12-1 through 12-2
12-7 through 12-8

12-9 through 12-10
16-21 through 16-22
18-3 through 18-10

18-11 through 18-12
18-21 through 18-22
18-41 through 18-42

18-45 through 18-52
Glossary-19 through 24
8ibliography-1 through 4
Index-1 through 24

Insert

3-15 through 3-16
4-1 t.hrough 4-2
4-2A through 4-28
4-3 through 4-4
5-3 th rough 5-4
5-4A through 5-4B
5-5 th rough 5-6
5-9 through 5-10
5-13 through 5-18
6-5 through 6-6
6-11 through 6-16
7-1 through 7-6
8-3 through 8-4
9-9 th rough 9-10
9-10A through 9-108
10-5 through 10-6
10-13 through 10-16
10-16A through 10-168
11-1 through 11-10
II-lOA through 11-100
11-15 through 11-20
12-1 through 12-2
12-7 through 12-8
12-8A through 12-88
12-9 through 12-10
16-21 through 16-22
18-3 through 18-10
18-10A through 18-10B
18-11 through 18-12
18-21 through 18-22
18-41 through 18-42
18-42A through 18-42B
18-45 through 18-52
Glossary-19 through 24
Bibliography-1 through 2
Index-1 through 24

Changes are indicated by vertical bars in the margins of the replacement pages.

Retain this Product I nformation Announcement as a record of changes made to the base publication.

To order additional copies of this document

• United States customers call Unisys Direct at 1-800-448-1424

• All other customers contact your Unisys Subsidiary Librarian

• Unisys personnel use the Electronic Literature Ordering (ELO) system

• UNISYS A Series
Task Management
Programming
Guide

Copyright © 1991 Unisys Corporation.
All rights' reserved.
Unisys is a registered trademark of Unisys Corporation.

Release 3.9.0

Priced Item

September 1991

Printed in U S America
8600 0494-000

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the
names, places, and/or events with the names of any individual, living or otherwise, or that of any
group or association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THE DOCUMENT. Any product and
related material disclosed herein are only furnished pursuant and subject to the terms and .
conditions of a duly executed Program Product License or Agreement to purchase or lease
equipment. The only warranties made by Unisys, if any, with respect to the products described in
this document are set forth in such License or Agreement. Unisys cannot accept any financial or
other responsibility that may be the result of your use of the information in this document or
software material, including direct, indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software material
complies with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

Correspondence regarding this publication may be forwarded using the Product Information card at
the back of the manual, or may be addressed directly to Unisys, Product Information, 25725
Jeronimo Road, Mission Viejo, CA 92691.

Page Status

Page Issue

iii throug~ iv -010
v through xii -000
xiii through xxi -010
xxii Blank
xxiii -010
xxiv Blank
1-1 through 1-11 -000
1-12 Blank
2-1 through 2-25 -000
2-26 Blank
3-1 through 3-4 -000
3-5 through 3-6 -010
3-7 through 3-14 -000
3-15 through 3-16 -010
3-17 through 3-28 -000
4-1 through 4-4 -010
4-5 through 4-28 -000
5-1 through 5-2 -000
5-3 through 5-6 -010
5-7 through 5-8 -000
5-9 th rough 5-10 -010
5-11 through 5-12 -000
5-13 through 5-17 -010
5-18 Blank
6-1 through 6-4 -000
6-5 th rough 6-6 -010
6-7 through 6-10 -000
6-11 through 6-15 -010
6-16 Blank
7-1 through 7-5 -010
7-6 Blank
8-1 through 8-2 -000
8-3 through 8-4 -010
8-5 th rough 8-8 -000
9-1 th rough 9-8 -000
9-9 through 9-10B -010
9-11 through 9-16 -000
10-1 through 10-4 -000
10-5 th rough 10-6 -010
10-7 through 10-12 -000
10-13 through 10-16B -010
10-17 -000

continued

86000494-010 iii

Page Status

iv

continued

Page

10-18
11-1 through 11-100
11-11 through 11-14
11-15 through 11-20
11-21 through 11-22
12-1 through 12-2
12-3 through 12~6
12-7 through 12-10
12-11 through 12-15
12-16
13-1 through 13-4
14-1 th rough 14-2
15-1 through 15-5
15-6
16-1 through 16-20
16-21 through 16-22
16-23 through 16-24
17-1 through 17-39
17-40
18-1 through 18-2
18-3 through 18-12
18-13 through 18-20
18-21 through 18-22
18-23 through 18-40
18-41 th rough 18-42 B
18-43 through 18-44
18-45 through 18-52
18-53 through 18-79
18-80
19-1 through 19-20
20-1 through 20-2
Glossa ry-l th rough 18
Glossary-19 through 23
Glossary-24 .
Bibliography-1 through 2
Index-1 through 24

Issue

Blank
-010
-000
-010
-000
-010
-000
-010
-000
Blank
-000
-000
-000
Blank
-000
-010
-000
-000
Blank
-000
-010
-000
-010
-000
-010
-000
-010
-000
Blank
-000
-000
-000
-010
Blank
-010
-010

Unisys uses an II-digit document numbering system. The suffix of the document
number (1234 5678-xyz) indicates the document level. The first digit of the suffix (x)
designates a revision level; the second digit (y) designates an update level. For example,
the first release of a document has 'a suffix of -000. A suffix of -130 designates the
third update to revision 1. The third digit (z) is used to indicate an errata for a particular
level and is not reflected in the page status summary.

86000494-010

About This Guide

Purpose

Scope

This guide describes the following types of operating system features that can be
accessed using programming languages:

• Tasking features

These are features that enable processes to initiate, monitor, and control other
processes. Examples of such features are the CALL, PROCESS, and RUN
statements, task variables, and task attributes. Features related to job restarting
and process history also fall into this category.

• Interprocess communication features

These are features that enable user-defined information to be passed between
processes, or that help regulate the timing of parallel processes. Examples of such
features are events, libraries, and parameter passing.

This guide introduces basic concepts about tasking and interprocess communication,
and . gives examples of many of the concepts discussed. However, the detailed reference
information for many of these topics resides in other manuals. Of particular note are the
following topics:

• Task attributes

This guide introduces the functions of many task attributes. However, the full
descriptions of these attributes reside in the A Series Task Attributes Programming
Reference Manual.

• Port files

This important interprocess communication technique is only briefly introduced in
this guide. For a full description of how to use port files, refer to the A Series I/O
Subsystem Programming Guide.

• Job queues

These mechanisms for controlling the behavior of Work Flow Language (WFL) jobs
are described in detail in the A Series System Administration Guide.

86000494-000 v

About This Guide

• Programming language syntax

This guide discusses features that are available in the A Series implementations
of a number of programming languages, including ALGOL, COBOL74, and WFL.
The detailed syntax information for these features is in the manuals for these
programming languages.

Audience
The audience for this guide consists of applications programmers who are familiar
with at least one high-level programming language, such as ALGOL, C, COBOL74,
FORTRAN77, Pascal, orWFL.

Prerequisites
Before reading this guide, you should have a general familiarity with the concepts
discussed in the A Series Systems Functional Overview.

How to Use This Document
Because this guide addresses a variety of tasking and interprocess communication
techniques, it is unlikely that you will need to read the whole guide. For an overview of
tasking techniques, refer to Section 1, "Understanding Basic Tasking Concepts." For an
overview of interprocess communication techniques, refer to Section 13, "Understanding
Interprocess Communication." The information in these sections should help you
determine which of the other sections are relevant to your immediate needs.

Error messages related to tasking and interprocess communication are discussed
throughout this guide. The index at the end of this guide includes all these error
messages, and refers to the pages where they are discussed.

Statements about ALGOL in this guide apply also to DCALGOL, DMALGOL, and
BDMSALGOL unless otherwise specified.

The ANSI-68 version of COBOL is referred to as COBOL(68) in this guide. This
convention helps to distingUish between ANSI-68 COBOL and the newer COBOL
implementations (COBOL74 and COBOL85).

Organization

vi

This guide is divided into the following parts and sections.

Part I. Tasking

The sections in this part describe basic concepts and features related to initiating,
monitoring, and controlling processes.

8600 0494-000

About This Guide

Section 1. Understanding Basic Tasking Concepts

This section defines procedures, procedure entrance and initiation, task variables, and
task attributes. This section also gives an overview of the benefits and limitations of
tasking.

Section 2. Understanding Interprocess Relationships

This section discusses the concepts of inclusion, dependency, flow of control, jobs and
tasks, coroutines, process families, and predefined task variables.

Section 3. Tasking from Interactive Sources

This section explains how to initiate, monitor, and control processes by using the
Command and Edit (CANDE), Menu-Assisted Resource Control (MARC), and operator
display terminal (ODT) interfaces. This section also discusses the inheritance of task
attributes from each of these sources, and introduces task attributes that enable a
process to communicate with an operator.

Section 4. Tasking from Programming Languages

This section discusses the tasking capabilities of major languages. Capabilities discussed
include initiating various types of processes and using task attributes. Some examples
are also given.

Section 5. Establishing Process Identity and Privileges

This section introduces the task attributes, such as USERCODE, MIXNUMBER, and
NAME, that establish process identity. This section also discusses the various categories
of security status that a process can have, and explains how to assign such a security
status to a process.

-
Section 6. Monitoring and Controlling Process Status

This section discusses the various states a process can have, such as active, scheduled,
suspended, and terminated. This section also explains the methods of monitoring and
controlling process state using programming languages.

Section 7. Controlling Processor Usage

This section discusses task attributes that affect process priority and record or limit
processor usage. This section also relates processor usage to the various accounts that
can be displayed through system commands.

Section 8. Controlling Process Memory Usage

This section discusses task attributes that affect memory estimates for a process and
limit the memory usage of a process.

8600 0494-000 vii

About This Guide

viii

Section 9. Controlling Process I/O Usage

This section discusses task attributes that affect various aspects of process I/O activity.
Included are discussions of attributes that affect disk files, printed output, data comm
I/Os, and the total I/O activity of a process.

Section 10. Determining Process History

This section explains the various types of normal and abnormal terrriinations that a
process can have, and the means for determining how a process terminated. This section
also explains how to initiate and specify the contents of a program dump.

Section 11. Restarting Jobs and Tasks

This section discusses restarting WFL jobs automatically, using checkpoints to store
intermediate states of a process, and using the RESTART task attribute to reinitiate a
process after a fault termination.

Section 12. Tasking across Multihost Networks

This section explains how to initiate WFL jobs or other processes that run on a remote
host, how to monitor the status of a remote process, and how to ensure that a remote
process runs successfully in the environment of a remote host.

Part n. Interprocess Communication

The sections in this part discuss the various ways that processes can communicate
user-defined information to each other.

Section 13. Understanding Interprocess Communication

This section introduces the types of objects that are most useful for sharing information
between processes, methods used to make these objects available to more than one
process, and the means of synchronizing access to shared objects.

Section 14. Using Task Attributes

This section discusses the task attributes for passing user-defined information between
processes.

Section 15. Using Global Objects

This section discusses the scope of declarations in WFL and ALGOL, and the ability of
internal tasks to access and share these global objects.

Section 16. Using Events

This section discusses the use of events to regulate the timing of asynchronous
processes. Topics include the available state, the happened state, interrupts, and buzz
loops. .

8600 0494-000

About This Guide

Section 17. Using Parameters

This section discusses the effect of parameter passing on the scope of a declaration,
actual and formal parameters, parameter passing modes, and the use of tasking
parameters in interprocess communication.

Section 18. Using Libraries

This section explains basic concepts relating to libraries, and provides examples of
libraries and calling programs in each language. Topics include user programs, library
programs, duration and sharing, properties of a library object, library attributes,
library-related task attributes, and parameter-type matching.

Section 19. Using Shared Files

This section summarizes the capabilities of port files, host control (HC) files, and
HYPERchannel@ (RY) files. This section also introduces the use of interprocess
communication techniques for regulating access to disk files. See the A Series I/O
Subsystem Programming Guide for details about all these topics.

Section 20. Communication across Multihost Networks

This section explains which interprocess communication techniques are available for use
between processes that run on separate host systems.

In addition, this guide includes a glossary, a bibliography, and an index.

Related Product Information

A Series ALGOL Programming Reference Manual, Volume 1: Basic
Implementation (form 8600 0098)

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for programmers who are familiar with programming
concepts.

A Series COBOL ANSI· 74 Programming Reference Manual, Volume 1: Basic
Implementation (form 8600 0296)

This manual describes the basic features of the Standard COBOL ANSI-74 programming
language, which is fully compatible with the American National Standard, X3.23-1974.
This manual is written for programmers who are familiar with programming concepts.

A Series Task Attributes Programming Reference Manual (form 8600 0502).
Formerly the A Series Work Flow Administration and Programming Guide

.This manual describes all the task attributes available on A Series systems. It also gives
examples of statements for reading and assigning task attributes in various programming
languages. .

HYPERchannel is a registered trademark of Network Systems Corporation.

8600 0494-000 ix

About This Guide

x

A Series Work Flow Language (WFL) Programming Reference Manual (form
86001047)

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform
library maintenance such as copying files. This manual is written for individuals who
have some experience with programming in a block-structured language such as ALGOL
and who know how to create and edit files using CANDE or the Editor.

8600 0494-000

Contents

Part I. Tasking

Section 1.

Section 2.

About This Guide . v

Understanding Basic Tasking Concepts

Tasking Concepts. 1-1
Programs and Processes 1-1
Task Attributes . 1-2
Interactive Tasking , 1-3
Programmatic Tasking. 1-3
Process Termination 1-4
Internal and External Processes. 1-5

Internal Processes. 1-5
External Processes 1-6

Program Structure. 1-6
Advantages of Tasking. 1-7

Simplifying System Operations 1-8
Increasing Programmer Productivity. 1-8

Modifying Program Behavior. 1-8
Using Programs as Modules. 1-9
Using Multiple Languages in an Application 1-10

Improving Application Performance. 1-10
Limitations of Tasking. 1-11

Understanding Interprocess Relationships

Inclusion 2-1
Flow of Control 2-2

Synchronous Processes . 2-2
Asynchronous Processes -. 2-2
Coroutines .. 2-3

Creating Coroutines . 2-3
Using Continue Statements 2-4
Determining Where Execution Resumes. 2-5
Block Structure and Coroutines 2-5
Continuing the Partner Process 2-5
Communication between Coroutines 2-6
Complex Coroutine Structures. 2-6

Dependency. 2-7
Communications Effects. 2-8
Flow of Control Effects. 2-8

Synchronization 2-8
Critical Blocks. 2-9

Effects of a Critical Block Exit 2-9

8600 0494-000 xi

Contents

Defining the Critical Block 2-10
Preventing ALGOL Critical Block Exits 2-10
Preventing COBOL74 Critical Block Exits. . 2-11
Automatic Protection from WFL Critical

Btock Exits. 2-11
Critical Block Examples 2-11

Process Families. 2-17
Familial Relationships 2-17
Jobs and Tasks. 2-18
Special Types of Jobs. 2-19

WFL Jobs. 2-19
BDBASE Tasks . 2-20
MCS Sessions. 2-20

Accessing Task Variables 2-21
MYSELF Task Variable. 2-21
MYJOB Task Variable. 2-21
Exception Task . 2-22
Partner Processes 2-23
Other Task Variables ' 2-24
Private Processes 2-24

Setting Resource Limits : . . . 2-24

Section 3. Tasking from Interactive Sources

CANOE ',' 3-1
CANDE Tasking Capabilities. 3-1

Initiating Dependent Processes from CANDE. . . . 3-1
Initiating Compilations from CANDE 3-3
Initiating Utilities from CANDE 3-3
Submitting WFL Jobs from CANOE 3-3
Access to Task Attributes in CANDE 3-4
Monitoring and Controlling Processes in CANOE. 3-5
Saving CANOE Commands for Later Use. 3-6

CANDE Programming Considerations. • 3-6
Receiving Parameters from CANOE. 3-6
Access to Ancestral Processes in CANDE 3-6
Communicating with CANOE Terminals. 3-7

MARC......... 3-8
MARC Tasking Capabilities. 3-8

Initiating Dependent Processes from MARC 3-9
Initiating Compilations from MARC. 3-9
Initiating Utilities from MARC. 3-9
Submitting WFL Jobs from MARC. 3-9
Monitoring Processes Initiated from MARC. 3-10
Monitoring Other Processes in MARC. 3-11
Communicating with Interactive Processes in

MARC. 3-12
Access to Task Attributes in MARC 3-13

MARC Programming Considerations 3-14
. Receiving Parameters from MARC. 3-14

Access to Ancestral Processes in MARC. ; 3-14

xii 86000494-000

Section 4.

8600 0494-010

ODT

Contents

Communicating with MARC Terminals

OOT Tasking Capabilities
Submitting WFL Jobs from an OOT
Initiating Processes from an DDT
Initiating Compilations from an OOT
Initiating Utilities from an DDT
Monitoring and Controlling Processes at an ODT .
Access to Task Attributes from an OOT

OOT Programming Considerations
Receiving Parameters from an ODT ... "
Access to Ancestral Processes in the ODT

3-15
3-16
3-16
3-16
3-17
3-17
3-17
3-17
3-18
3-18
3-18

Environment. 3-19
Communicating with an OOT 3-19

Tasking Command Equivalents. 3-20
Communicating with an Operator. 3-26

Displaying Information to Operators. 3-26
Accepting Information from Operators 3-27

Tasking from Programming Languages

Work Flow Language (WFL)
Submitting WFL Input
Selecting the Queue for a Job

Deciding on the Queue for a Job
Requesting the Queue for a Job :

Specifying a Start Time
Structuring the WFL Job
Initiating Dependent Processes from WFL
Initiating Compilations from WFL
Initiating Utilities from WFL
In itiati ng I nteractive Processes from WFL
Submitting Other WFL Jobs
Access to Task Attributes in WFL
Using File Equations in WFL
Responding to Error Conditions in WFL
Communicating with Other Processes in WFL
Restarting WFL Jobs
WFL Example

ALGOL
Structuring an ALGOL Program
Initiating Processes from ALGOL
Initiating Compilations from ALGOL
Initiating Utilities from ALGOL
Initiating Interactive Processes from ALGOL
Submitting WFL Jobs from ALGOL
Access to Task Attributes in ALGOL
Communicating with Other Processes from ALGOL .. .
Restarting ALGOL Processes
DCALGOL Features
ALGOL Examples

4-1
4-1
4-3
4-4
4-6
4-7
4-8
4-8
4-9
4-9
4-9

4-10
4-10
4-11
4-11
4-11
4-12
4-13
4-13
4-14
4-14
4-15
4-15
4-15
4-15
4-16
4-16
4-16
4-16
4-17

xiii

Contents

COBOL74 . 4-19
Structuring a COBOL74 Program 4-19
Initiating Processes from COBOL74 4-20
Using Coroutines in COBOL74 4-21
Entering Individual COBOL74 Procedures. 4-21
Initiating Compilations from COBOL74 4-22
Initiating Utilities from COBOL74 4-22
Initiating Interactive Processes from COBOL74 4-22
Submitting WFL Jobs from COBOL74 4-22
Access to Task Attributes in COBOL74. 4-23
Invoking COBOL74 Programs. 4-23
Communicating with Other Processes from COBOL74 . 4-23
Restarting COBOL(68) Processes 4-23
COBOL74 Examples. 4-24

Other Languages ;.. 4-27

Section 5. Establishing Process Identity and Privileges

Process Identity' 5-1
Mix Number and Stack Number 5-1
Usercode, Access Code, and Charge Code 5-2
Name. 5-4
Object Code File . 5-4A

Transparent Object Code File Privileges 5-5
Delayed Effects of Object Code File Privileges . .. 5-6
Copying Privileged Object Code Files. 5-6

Originating Source. 5-6
Process Security Classes. 5-6

Nonprivileged Status. 5-7
Privileged Status. . .. 5-9
Nonusercoded Status '. 5-10
ODT Status 5-12
SYSTEMUSER Status 5-13
Security Administrator Status 5-13
Compiler Status 5-13
Message Control System Status 5-14

How an MCS Acquires Its Privileges. 5-14
Priority of an MCS . 5-14
Privileges of an MCS . 5-15
Inheritance of MCS Status 5-16

Tasking Status 5-17

Section 6. Monitoring and Controlling Process Status

Understanding Process Status. 6-1 .
STATUS Task Attribute. 6-3
WFL Task State Expression. 6-4
Mix Display Commands. 6-5
Y (Status I nterrogate) Stack States 6-6

Monitoring Changes in Process Status 6-7

xiv 86000494-010

Contents

Controlling Process Status. 6-8
Terminating a Process . 6-9
Thawing a Library. 6-10
Suspending and Resuming Processes. 6-11
Preparing a Task Variable for Reuse. 6-11
Preventing Process Scheduling 6-11
Preventing Process Suspension 6-12

Checking File Residence. 6-12
Using AUTORESTORE for Disk Files 6-13
Using a Serial Number for Tape Files. 6-13
Using UNITNO and OMITTEDEOF for Unlabeled

Tape Files. 6-13
Using the AUTORM Option 6-14
Using the ORGUNIT Value for ODT Files 6-15
Using Conditional ACCEPT Statements 6-15

Section 7. Controlling Processor Usage

Controlli ng Process Priority' . 7-1
Limiting Processor Usage 7-3
Understanding Processor Usage Accounting. 7-3

Section 8. C~ntrolling Process Memory Usage

Understanding Process Memory Usage. 8-1
Main Memory and Virtual Memory ;...... 8-1
Process Components. 8-2
Presence-Bit Operations. 8-3

Controlling Code Segment Dictionary Sharing. 8-3
Controlling Process Scheduling . 8-4
Preventing Stack Stretches. 8-6
Protecting against Looping Processes. 8-7
Restricting Save Memory Usage. 8-7

Section 9. Controlling Process I/O Usage

Establishing the Default Usercode for Files. 9-1
Modifying File Attributes. 9-1
Controlling Disk File Usage. 9-3

Specifying Family Substitution 9-4
Preventing File Duplications. 9-5
Automatically Restoring Missing Disk Files. 9-6
Limiting Disk Usage 9-6

Controlling Printing 9-7
Default Handling of Printer Output 9-7

Storing Printer Backup Files Temporarily 9-7
Titling of Printer Backup Files. 9-8
Submitting Print Requests 9-9
Selecting Print Requests. 9-9

86000494-010 xv

Contents

xvi

Programmatic Control Over Printing
Other Print-Related Task Attributes

Controlling Data Communications and Messages
Controlling Message Tanking
Suppressing Unwanted Messages

Localization
Limiting I/O Usage

Section 10. Determining Process History

Understanding Termination Messages
Using Log Information

Specifying the I nformation to 8e Logged
Controlling Job Summary Printing
Saving the Job Summary File ... ~ .. i •••••••••••

Analyzing the System Log
Programmatically Interrogating Process History

Determining the Type of Termination
Determining Whether a Compilation Was Successful ..
Responding to Task Failures
Determining Where a Fault Occurred
Designing a Program to Survive Faults

Controlling Program Dumps
Using Program Statements to Control Program Dumps.
Using Operator Commands to Control Program Dumps
Controlling the Program Dump Destination
Using the Task File
Analyzing a Program Dump from a Running Process ..
Causing Symbolic Dumps for RPG Processes
Effect of Resource 'Limits on Program Dumps
,Understanding Internal and External Causes

Section 11. Restarting Jobs and Tasks

Designing WFL Jobs for Automatic Restarts
Preventing Job Side Effects
Preventing Task Side Effects
Understanding Job Restart Failure
Understanding Disk Resource Control Effects

Manually Restarting WFL Jobs
Checkpoint Facility ;

Programmatically Invoked Checkpoints
Storing Information with a Checkpoint
Planning for File Recovery
Planning for Library Recovery
Invoking the Checkpoint

Using a CHECKPOINT Statement
Using the CALLCHECKPOINT Procedure ..

Creating Output Disk Files' with a Checkpoint .. .
Restrictions on the Use of Checkpoints

9-10
9-10A

9-12
9-12
9-14
9-15
9-16

10-1
10-4
10-4
10-5
10-5
10-6
10-6
10-7
10-7
10-8
10-8

10-11
10-11
10-12
10-12
10-13
10-16

10-16A
10-168

10-17
10-17

11-1
11-2
11-2
11-3
11-4
11-4
11-5
11-5
11-6
11-6
11-6
11-7
11-7
11-8

11-108
11-10C

86000494-010

Part II.

Contents

Determining Eligibility for Checkpoints
Determining Whether the Checkpoint Succeeded

Operator-Invoked Checkpoints
Programmatically Preventing Operator

Checkpoints
Displaying the Checkpoint Status
Invoking a Checkpoint Interactively
Canceling a Checkpoint Interactively
Operator Actions after the Checkpoint

Restarting a Checkpointed Task
Restarting Checkpointed Tasks Automatically .. .
Initiating a Restart Explicitly•.

Automatic Retries .

Section 12. Tasking across Multihost Networks

Submitting Remote WFL Jobs
Running a Local WFL Job on a Remote Host
Submitting a WFL Job Stored on a Remote Host
Meeting Remote Job Queue Requirements

Initiating Non-WFL Remote Processes
Specifying the Remote Host
Limitations on a Non-WFL Remote Process
Host Availability
I nitiating Processes from a Remote Session
Interrogating the Remote Ancestry of a Process

Preventing User Identity Problems
Usercode "Identity "
Accesscode and Charge Validation
FAMILY Identity .•.........................

Logging of Remote Processes
System Log Entries
Job Summaries for Remote Processes

Resource Limits for Remote Processes
Interacting with Remote Processes

Viewing Remote Process Messages
Local Operator Control of Remote Processes
MARC Control of Remote Processes
CAN DE Control of Remote Processes
Visibility of Remote Processes to Remote Operators .. .
Displaying TASKING/MESSAGE/HANDLER and

TASKING/STATE/CONTROLLER
Using Host Services-Supported Task Attributes

Interprocess Communication

Section 13. Understanding Interprocess Communication

11-11
11-11
11-15

11-16
11-16
11-17
11-17
11-18
11-18
11-19
11-19
11-21

12-2
12-2
12-2
12-3
12-3
12-3
12-4
12-5
12-5
12-6
12-6
12-6

12-8A
12-8A
12-88
12-88

12-9
12-10
12-10
12-10
12-11
12-12
12-13
12-13

12-13
12-14

Objects Used in Interprocess Communication 13-2
Methods of Sharing Objects. 13-2

86000494-010 xvii

Contents

xviii

Methods of Synchronizing Access 13-3

Section 14. Using Task Attributes

Section 15. Using Global Objects

Communication through Global Objects in WFL 15-2
Communication through Global Objects in ALGOL. 15-4

Section 16. Using Events

Declaring Events
Accessing the Available State

Procuring an Event Unconditionally
Procuring an Event Conditionally
Liberating an Event
Partially Liberating an Event
Testing the Availability of an Event
Determining the Ownership of an Event

Accessing the Happened State
Causing an Event
Implicitly Causing an Event
Causing and Resetting an Event
Partially Causing an Event
Resetting an Event
Waiting on an Event
Waiting on Time
Waiting on and Resetting an Event
Waiting on Multiple Events
Testing the Happened State
Duration of the Happened State

Using Implicitly Declared Events
Using Interrupts

Declaring Interrupts
Attaching or Detaching an Interrupt
Enabling or Disabling an Interrupt
Using General Disable and Enable Statements
Waiting for Interrupts

Efficiency Considerations
Buzz Loops
Preventing Excessive Interrupt Overhead
Preventing Starvation Problems

Discontinued Processes and Events
Using EPILOG and EXCEPTION Procedures
Using Timed Wait Statements
Using Conditional Procure Statements
Determining Whether to Liberate an Event

Example of Event Usage ',' .. .

16-2
16-2
16-3
16-$
16-4
16-4
16-5
16-6
16-7
16-8
16-8
16-9
16-9
16-9

16-10
16-10
16-10
16-11
16-11
16-12
16-12,
16-13
16-14
16-15
16-16
16-16
16-17
16-17
16-18
16-18
16-19
16-20
16-20
16-22
16-22
16-22
16-23

8600 0494-010

Contents

Section 17. Using Parameters

Determining the Scope of Parameters
Parameter Pa"ssing Modes

Call-by-Value Parameters
Call-by-Name Parameters
Call-by-Reference Parameters
Read-Only Parameters
Specifying the Passing Mode

Using Tasking Parameters
Matching Each Parameter Type
Resolving Passing Mode Conflicts
Passing Arrays

Matching Dimensions and Elements
Matching Unbounded Arrays
Matching Pascal Arrays

Passing Multidimensional Arrays
Passing Parameters to Pascal Schemata .. .

Passing COBOL74 Arrays to Bound Procedures ..

Section 18. Using Libraries

Creating Library Programs
Exporting Objects
Freezing the Library
Controlling Library Sharing
Initiating Internal Library Processes
Reinitialization of Local Variables
Restrictions on OWN Objects
Restrictions on COBOL(68) and COBOL74 Libraries ..

Creating User Programs
Importing Objects
Specifying Libraries

FUNCTIONNAME
INTNAME
LIBACCESS
LlBPARAMETER
TITLE

Controlling Library Linkage
Linking to Libraries
Initiating Library Processes

Implicitly Initiating a Library
Explicitly Initiating a Library

Linking Export and Import Objects
Direct Linkage
Indirect Linkage
Dynamic Linkage
CircuJarLinkage
Matching the Object Name

Type Matching
Matching Procedure Types

86000494-010

17-1
17-3
17-3
17-3
17-4
17-6
17-6
17-6
17-7

17-30
17-32
17-32
17-33
17-34
17-34
17-35
17-38

18-2
18-2
18-3
18~4

18-5
18-5
18-6
18-7
18-8
18-8
18-9
18-9

18-10A
18-10B

18-11
18-11
18-11
18-12
18-13
18-13
18-13
18-14
18-14
18-14 "
18-14,
18-15
18-16
18-18
18-18

xix

Contents

xx

Matching Parameter Types. '
C Parameter Types
COBOL(58) Parameter Types
COBOL74 Parameter Types
COBOL85 Parameter Types
FORTRAN and FORTRAN77 Parameter

Types
NEWP Parameter Types
Pascal Parameter Types
PL/I Parameter Types

Matching Array Lower Bounds
Matching Parameter-Passing Mode

Delinking from Libraries
Thawing and Resuming Libraries
Determining Which Users Are Linked to a Library

Understanding Library Process Structure '.' ..
Process Stacks
Library Task Attributes
Error Handling

Providing Global Objects
Security Considerations
Library Debugging
Library Examples 0 0

ALGOL Library: OBJECT/FILEMANAGER/LIB ... 0 • 0 0

ALGOL User Program #1 .. 0 0 •••• 0 • 0 •••••• 0 • 0 •

ALGOL Library: OBJECT/SAMPLE/LIBRARY 0 • 0 0

ALGOL Library: OBJECT/SAMPLE/DYNAMICLIB ... 0 •

ALGOL User Program #2 ... 0 000 • 0 0 ••••••• 0 • 0 0

ALGOL Circular User Programs. 0 0 0 0 0 0 0 • 0 ••• 0 • 0 0

ALGOL Incorrect Circular Libraries .. 0 0 • 0 ••• 0 • 0 •••

Example 1: Indirect Self Referencing 0 ; ••• 0 •• 0

Example 2: Direct Self Referencing 0

Example 3: Libraries that Wait on Each Other .. 0

C Library and ALGOL User Program 0 0 0 0 •• 0 • 0 • 0 0 • 0

C User Program Passing Array to ALGOL Library .. 0 ••

C User Program Passing File to ALGOL Library 0

COBOL(58) Library: OBJECT/SAMPLE1 ... 0 • 0 •• 0 0

COBOL(58) Library: OBJECT/SAMPLE2 . 0 0 0 0 •• 0 • 0

COBOl74 Library: OBJECT/SAMPLE4. 00' •• 0 0 •• 0 0

COBOL74 Library: OBJ ECT/SAM PLE5 . 0 • 0 ••• 0 • 0 ••

COBOL(58) User Program ... 0 •••• 0 •••• 0 ••• 0 0 0

COBOL74 User Program ... 0 •• 0 • 0 ••••••••••••

ALGOL User Program #3 .. 0 0 • 0 • 0 •• 0 0 0 • 0 •• 0 •••

COBOl85 Libraries and User Program 00 0 0 • 0 •• 0 •••

FORTRAN Library and User Program
FORTRAN77 Library and User Program .. 0 ••••••••

Pascal Library .. 0 •••••••••••••••••••••• 0 •••

PL/I Library and User Program

18-19
18-21
18-23
18-25
18-27 .

18-29
18-30
18-32
18-37
18-38
18-39
18-41
18-41

18-42A
18-42B
18-42B
18-42B

18-43
18-43
18-45
18-48
18-48
18-48
18-51
18-52
18-53
18-54
18-55
18-56
18-57
18-58
18-58
18-59
18-51
18-54
18-65
18-56
18-66
18-56
18-67
18-68
18-69
18-70
18-74
18-75
18-76
18-78

86000494-010

Contents

Section 19. Using Shared Files

Sharing Communications Files
Using Port Files

COBOL74 Port File Example
ALGOL Port File Example

Using Host Control (HC) Files
Using HYPERchannel (HY) Files

Sharing Other Kinds of Files
Using Shared Logical Files ~ ..

Specifying the File Location
Synchronizing Access to a File
Establishing Access Rights

Example: Nonprivileged Library Program ..
Example: Privileged Transparent Library

Program
Example: Parent and Task Accessing a

Guarded File
Understanding I/O Accounting
File Sharing Examples

Using Shared Physical Files
Entering a File in the Directory
Matching Physical Files
Ensuring Exclusive Access to a Physical File '
Sharing Nonexclusive Files

Section 20. Communication across Multihost Networks

19-1
19-1
19-2
19-4
19-5
19-6
19-7
19-7
19-8
19-8
19-9

19-10

19-11

19-13
19-13
19-15
19-17
19-17
19-18
19-19
19-20

Glossary. 1

Bibliography ; . 1

Index '. 1

86000494-010 xxi

xxii 86000494-010

Tables

3-1.

4-1.

5-1.

6-1.
6-2.

10-1.

11-1.
11-2.

17-1.
17-2.

18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
18-9.
18-10.

86000494-010

Interactive Tasking Functions '

WFL Execution Modes

WFL Statements Executed with Privilege :

Process States .. .
Effects of GOINGAWAY and ACTIVE Assignments

Abnormal Termination Messages

Checkpoint Completion Codes
Restart Messages

Programming Language Parameter Types
Matching Parameter Types

C Parameters
COBOL(68) Parameters
COBOL74 Parameters
COBOL85 Parameters ~
FORTRAN/FORTRAN77 Parameters
NEWP Parameters
Pascal Parameters
PLJI Parameters
Unbounded and Simple Array Declarations '
Parameter-Passing Modes

3-22

4-2A

5-12

6-2
6-10

10-2

11-12
11-20

17-12
17-21

18-21
18-23
18-25'
18-27
18-29
18-30
18-32
18-37
18-38
18-40

xxiii

xxiv 86000494-010

Part I
Tasking

. 8600 0494-000

86000494-000

Section 1
Understanding Basic Tasking Concepts

A Series tasking features are inherent in the overall system architecture. Various
A S~ries programming languages and operations interfaces provide you with access to
different subsets of the tasking capabilities of A Series systems. This section presents an
overview of A Series tasking features and discusses the advantages and limitations of
these features.

Tasking Concepts
The following subsections discuss the relationships between programs and processes, and
the methods you can use to monitor and control process behavior.

Programs and Processes

A program is a sequence of statements written in any of a number of languages,
including ALGOL, BASIC, C, COBOL74, COBOL85, FORTRAN77, Pascal, and Work
Flow Language (WFL). The file in which you write and store these statements is
referred to as a source file. By compiling the source file, you cause the creation of an
object code file.

By using any of a number of commands or statements, you can cause a particular object
code file to be initiated. That is to say, you cause the system to start performing the
instructions in the object code file. At this point, the object code file is being executed.
However, in a sense, nothing is happening to the object code file itself. The system
merely reads instructions from the object code file; the contents of the file remain
unchanged.

There is, nonetheless, a dynamic entity called a,process, which is separate from the
object code file, but which reflects the current state of the execution of the object code
file. A process stores the current values of variables used by the program, as well as
information about which procedures have been . entered and which statement is .currently
being executed. (procedures are discussed under "Internal and External Processes"
later in this section.)

Each process exists in the system memory, and consists of several distinct structures that
are discussed in Section 8, "Controlling Process Memory Usage."

The distinction between object code files and processes is a very important one on
A Series systems. This is because, at any given time, there can be multiple processes
that are executing the same object code file; these are referred to as instances of that
object code file. A new instance is created each time a user or an existing process.
submits a statement that initiates the object code file.

86000494-000 1-1

Understanding Basic Tasking Concepts

Because many instances of the same object code file can be running at the same time, the
object code file title is not sufficient to uniquely identify a process. Therefore, in system
command displays, the various processes are identified both by an object code file title
and by a unique four-digit number called the mix number. For further information on
mix numbers, refer to Section 5, "Establishing Process Identity and Privileges."

Even if processes are executions of the same object code file, the processes are
completely separate entities and do not interact with each other. For example, suppose
the object code file called OBJECT/PROG includes a declaration of an integer variable
named N, as well as various statements that assign values to N. In this case, each
instance of OBJECT/P~OG has its own copy of variable N in memory. When one process
changes the value of N, there is no change to the value N has for the other processes.

The fact that processes are separate and maintain their own copies of variables generally
prevents confusion and simplifies program design. However, there can also be cases
where you want processes to have shared access to a particular variable. For these
cases, the A Series systems provide a variety of interprocess communication techniques,
which are described in Part II of this guide.

Tasking consists of using various A Series features to initiate, monitor, and control
processes. You can perform tasking functions by entering commands through various
system operation interfaces, or by writing programs that initiate, monitor, and control
the execution of other programs.

Task Attributes

1-2

Task attributes are entities that record various properties of a process, such as its
usercode, mix number, priority, printing defaults, and so on.

There are a limited number of task attributes, which are defined by the operating system
and have fixed meanings. Each process possesses all of these task attributes, but the
values of the task attributes can vary. For example, each process has a USERCODE task
attribute, but where one process might have a USERCODE value of JASMITH, another
process might have a USERCODE value of JANEDOE.

Task attributes record or modify many aspects of process execution, including security,
processor usage, memory usage, and I/O activity. You can assign task attributes to
a process either through commands entered at an interactive source, or through
statements in a program.

This guide introduces many of the important uses of task attributes~ The remaining
sections in Part I of this guide introduce task attributes within discussions of general
functional areas, such as processor usage, memory usage, and so on. For detailed
information about any of these task attributes, you can refer to the A Series Task
Attributes Programming Reference Manual, which presents the task attributes in
alphabetical order.

8600 0494-000

Understanding Basic Tasking Concepts

Interactive Tasking

You can perform tasking functions through any of the following interactive interfaces:

• Command and Edit (CANDE)

This is a command-driven environment that provides file handling and tasking
capabilities. .

• Menu-Assisted Resource Control (MARC)

This is a menu-driven interface to system operations functions.

• Operator display terminals (ODTs)

These are terminals that support an interface called system command mode.

Each of these products provides the following general types of tasking capabilities:

• A command or menu selection that allows you to initiate any object code file by
name. Examples are the RUN command in CANDE and MARC.

• Syntax for specifying task equations, which are task attribute assignments applied to
a process when it is first initiated.

• Task attribute inheritance, which causes a process to receive task attributes
associated with the initiating source.

• Various commands or selections for monitoring the status and resource usage of
processes, or for intervening in process execution in various ways.

The tasking capabilities of CANDE, MARC, and the ODT are described in Section 3,
"Tasking from InteractIve Sources."

Note that many commands entered by users can indirectly cause a process to be
initiated. For example, the Communications Management System (CaMS) initiates
instances of direct window programs in response to variations in the message traffic
from users. Similarly, the system initiates processes to execute some specialized system
commands, such as LOG.

This guide does not attempt to describe all such cases of indirect tasking. CANDE,
MARC, and the ODT are all introduced in this guide because they provide direct,
generalized tasking interfaces. With these products, you can initiate any object code file,
as well as monitor and control any process (to the extent allowed by system security).

Programmatic Tasking

You can perform tasking functions using any of the following programming languages:
ALGOL, APLB, COBOL(68), COBOL74, PL/I, and WFL. This guide provides details
about the tasking capabilities of the newer and more popular of these languages, namely
ALGOL, COBOL74, and WFL.

8600 0494-000 1-3

Understanding Basic Tasking Concepts

Each of these languages provides you with the following types of tasking capabilities:

• Statements that allow you to initiate any object code file by name. Examples are the
CALL, PROCESS, and RUN statements in ALGOL and COBOL74.

• Constructs for reading and assigning the task attributes of a process before the
process is initiated, while it is running, and after it completes execution.

The tasking capabilities of each of these languages are described in Section 4, "Tasking
from Programming Languages."

At this point you might be aware of the potential for some ambiguity in the use of
task attributes within programs. For example, every process has a USERCODE task
attribute. If you write a program that makes an assignment to the USERCODE task
attribute, how does the system know which process the USERCODE should be applied
to?

The answer is that ALGOL, COBOL74, and WFL all provide a special type of variable
called a task variable. A task variable is also known as a control point in COBOL74. You
can declare one or more task variables in a program, each with a distinct name. When
you use a process initiation statement, you include a reference to a task variable in that
statement. The task variable thereafter becomes associated with the new process.

Statements that use task attributes always specify a task variable name as well as a task
attribute name. In this way, it is always clear which process is being referred to.

When one process initiates another process, many of the task attributes of the initiating
process are transferred to the new process. This transference is called inheritance.
Details about the task attributes that are inherited, and under what circumstances
they are inherited, are given in the A Series Task Attributes Programming Reference
Manual.

Process Termination

1-4

A process typically ends when the last instruction in the object code file is executed. This
is referred to as a normal termination.

However, a process can also terminate prematurely for any of a number of reasons. For
example, you can use the DS (Discontinue) system command to terminate a process. A
process can also terminate because a flaw in program design causes it to attempt to do
something impossible, such as dividing by zero. Additionally, all processes are terminated
in the event of a system halt/load. All of these types of terminations are referred to as
abnormal terminations because the inference is that something went wrong.

When you initiate a process, you usually want to be able to find out later whether it ran
successfully or not. The system provides a number of facilities to help you determine
whether the process ran successfully, and why it failed if it was not successful. These
facilities include the mSTORYTYPE, HISTORYCAUSE, and mSTORYREASON task
attributes, and the program dump facility. These facilities are described in Section 10,
"Determining Process History."

8600 0494-000

Understanding Basic Tasking Concepts

Sometimes you might want to rerun a process that terminated abnormally. For example,
if the process was terminated by a system halt/load, then the underlying program
might be perfectly sound. Restarting the process could enable it to complete its work
successfully. However, a number of design issues must be considered for processes
that are intended to be restartable. These design issues, and the means of restarting
processes, are explained in Section 11, "Restarting Jobs and Tasks."

Internal and External Processes

Up to this point, this section has discussed only cases where an object code file is
executed from beginning to end as a single process. However, A Series systems give you
the option of causing individual procedures to be initiated as separate processes. These
processes fall into two general categories: internal and external processes.

The following subsections describe the various types of internal and external processes.
For a discussion of the varying capabilities of these types of processes, refer to the
discussion of inclusion in Section 2, "Understanding Interprocess Relationships."

Internal Processes

Many progranuning languages give you the ability to create groups of declarations
and statements within a program, and to assign a name to each group. In ALGOL,
these groupings are referred to as procedures. In WFL, these groupings are referred .
to as subroutines. However, the basic concept is similar in both cases, and the term
"procedure" in this guide refers equally to ALGOL procedures and WFL subroutines.

Other progranuning languages offer similar types of structures, but ALGOL and WFL
are the only languages that give you a choice between the following two methods of
invoking a procedure:

• Procedure entrance

The syntax for entering a procedure consists of using the procedure name as if it
were a statement. Entering a procedure causes the procedure to be executed as
part of the same process that invoked the procedure. When the process finishes
executing the procedure, the process exits that procedure.

• Procedure initiation

The'syntax for initiating a procedure consists of using a CALL, PROCESS, or RUN
statement in ALGOL, or a PROCESS < subroutine> statement in WFL. Initiating
a procedure causes it to be executed as a new process, separate from the process
that invoked the procedure. This new process is referred to as an internal process
because it is executing part of the same object code file as the initiating process.

Of these methods, procedure entrance has the advantages of simplicity and low impact
on system resources, as discussed under "Limitations of Tasking" later in this section.
On the other hand, procedure initiation allows you to use parallel processing or to assign
the new process different task attribute values than those of the initiating process.
These features are introduced under" Advantages of Tasking" later in this section.

8600 0494-000 1-5

Understanding Basic Tasking Concepts

Note that, if you use the Binder utility to bind a procedure from a subprogram into a
host program, that procedure is thereafter considered an internal procedure of the host
program. If the host program is an ALGOL program, the host program can either enter
or initiate the bound procedure. If the procedure is initiated, the resulting process is
considered to be an internal process. For information about the Binder utility, refer to
the A Series Binder Programming Reference Manual.

External Processes

An external process is one that results when a statement in a program initiates an
external procedure. An external procedure is one that resides in a program other than
the program containing the statement that invokes the procedure. External procedures
are of three types:

• Separate programs

Any program, taken as a whole, can be thought of as an external procedure when
it is invoked by a statement in a different program. A separate program is always
executed as a separate process; that is, a process can initiate, but cannot enter, a
separate program. WFL, ALGOL, and COBOL74 all allow you to initiate separate
programs. In ALGOL and COBOL74, you must specify dummy procedures, called
declared external procedures, in statements that initiate separate programs.

• Passed external procedures

These are procedures passed into the program as parameters. You can write
programs in ALGOL that accept procedures as parameters from the initiating
program. Statements in the receiving ALGOL program can either enter or initiate a
passed procedure.

• Library procedures

These are procedures that are provided by a special type of program called a library.
Libraries make procedures available for use by other programs. Statements in an
ALGOL program can either enter or initiate a library procedure. Programs written
in other languages can enter, but cannot initiate, a library procedure. The methods
for writing libraries and programs that use libraries are discussed in Section 18,
"Using Libraries."

Program Structure

1-6

Each program is viewed by the operating system as having a certain block structure. The
block structure of the program can have implications for the critical block definition
and for the ability of processes to communicate through global objects. For further
information on these topics, refer to "Critical Blocks" in Section 2, "Understanding
Interprocess Relationships" and to Section 15, "Using Global Opjects."

The term flow of control refers to the order in which the statements of a program are
executed. Most statements perform an action and then pass control to the immediately
following statement. However, some statements can pass control to structures residing
elsewhere in the program.

8600 0494-000

Understanding Basic Tasking Concepts

A block is a program, or program subunit, that can contain a group of declarations and
a group of statements. The de,clarations create objects that are for local use by the
statements in the block. There are two kinds of blocks: procedures and simple blocks.

A procedure is a block that can be executed using a procedure invocation statement,
which passes control to the start of the procedure. When the procedure finishes
executing, control automatically returns to the procedure invocation statement, and
passes to the next statement in the program.

This abstract definition of a procedure corresponds to the way procedures are viewed by
the A Series operating system. Procedures are called by different names in the syntax
of the various programming languages. This definition of a procedure corresponds, for
example, to a PROCEDURE in ALGOL, a PROCEDURE or FUNCTION in Pascal, a
SUBROUTINE or FUNCTION in FORTRAN or FORTRAN77, or a nested program in
COBOL85. It also corresponds to a complete program written in any of these languages.

Note that a complete program written in COBOL(68) or COBOL74 is also considered
a procedure. However, a paragraph or a section in these languages is not considered a
procedure. It is true that a PERFORM statement resembles a procedure invocation
statement in that it causes control to pass through the paragraph or section and then
return to the PERFORM statement. However, paragraphs and sections cannot include
declarations and thus are not treated as procedures by the operating system. Therefore,
the various properties of procedures discussed in this guide do not apply to COBOL(68)
or COBOL74 paragraphs or sections.

A simple block is a block that cannot be specified in a procedure invocation statement.
Simple blocks exist only in ALGOL, where they appear among the statements in the
program, rather than' among the declarations. The beginning and end of a simple block
are marked by the keywords BEGIN and END. A simple block is executed in sequence
between the statements that immediately precede and follow the simple block.

Note that a BEGIN ... END group is considered to be a simple block only if it contains at
least one declaration. Otherwise, it is considered a compound statement. Compound
statements do not affect tasking or interprocess communication issues, and will not be
further discussed in this guide.

Some languages, including WFL and ALGOL, allow blocks to be declared within other
blocks. This practice is referred to as nesting. A block that contains a nested block is
said to be global to that nested block. The most global block is referred to as the outer
block of the program. '

The lexical level of a block is a measure of how deeply the block is nested. By default,
the outer block of a program has a lexica1level of 2; however, compiler control options
can be used to cause the outer block to be compiled with a higher'lexica1level. Each
procedure has a lexica1level one higher than the outer block or procedure in which it is
declared.

Advantages of Tasking
The benefits of tasking fall into the general areas of simplifying system operations,
increasing programmer productivity, and improving performance of an application.

8600 0494-000 1-7

Understanding Basic Tasking Concepts

Simplifying System Operations

Many applications involve running a sequence of programs, one after another in a certain
set order. Often it is necessary to specify parameters and task attribute assignments for
each of the programs. An operator can initiate the programs individually, providing the
needed parameters and task attribute assignments in each case. However, this proves
to be too time consuming in an environment where many applications are run during a
given work shift.

An alternative, which reduces the labor required of the operator, is to write a small
program whose only purpose is to initiate a series of other programs. Such a program
can provide a standard set of parameters and task attribute assignments. You can write
such a program in ALGOL, COBOL74, or WFL. This enables the operator to initiate a
single program and leave it to initiate all the others.

WFL is particularly suitable for implementing such programs because WFL programs
typically pass through job queues. An operator can use the MQ (Make or Modify Queue)
system command to create job queues and assign various job queue attributes to them.
The use of job queues enables the operator to submit jobs when it is convenient, while
relying on the system to initiate jobs at specified times or according to specified criteria.
Job queues are further discussed under "Selecting the Queue for a Job" in Section 4,
"Tasking from Programming Languages."

Increasing Programmer Productivity

Tasking techniques can improve programmer productivity by modifying the behavior of
existing programs, by allowing you to use programs as modules in a larger application,
and by allowing multiple programming languages to be used iIi an application.

Modifying Program Behavior

1-8

Sometimes a program is designed to run in a particular environment, and later that
environment changes. For example, a program might be designed to read a file on a
family named DATAPK Later, you might want to run a copy of that program on a
different system that does not have a family with that name. Rewriting the source
program and recompiling it can be a time-consuming process. Fortunately, many such
behaviors can be modified through task attribute assignments.

For example, there is a task attribute called FAMILY that causes a process to use files on
a different family than it otherwise would. Suppose a process expects to find all its input
files on the family named DATAPK. You can assign the FAMILY task attribute a value of
"DATAPK = CONTROL OTHERWISE DISK". This causes the process to look for all
its input files on the family named CONTROL instead of the family named DATAPK.

8600 0494-000

Understanding Basic Tasking Concepts

You can assign a task attribute to a process in any of the following ways, none of which
requires recompiling or rewriting the program that is being initiated:

• If you are running a program from CANDE or MARC, you can append task attribute
assignments to the RUN command that initiates the program.

• You can use a WFL MODIFY statement to assign default task attribute values to an
object code file. The system assigns these task attribute values each time the object
code file is run.

• ALGOL, COBOL74, and WFL all allow you to assign task attributes to a task
variable. If you then specify this task variable in a statement that initiates a
separate program, the task attribute assignments are applied to the new process.

The A Series Task Attributes Programming Reference Manual gives examples of these
methods of assigning task attributes.

Using Programs as Modules

A module is a body of code that can be reused in a variety of different contexts. The use
of modules simplifies the programmer's job by making it unnecessary to repeat large
amounts of code. One advantage of tasking is that it allows you to use an entire program
as a module in one or more larger applications.

For example, you could have a report-formatting and printing program. You might also
have a program that retrieves customer data from a database, and another program
that does an inventory analysis. The customer data program and the inventory analysis
program could both use process initiation statements to invoke the report-formatting
and printing program and cause it to create reports using the data collected.

Tasking is only one of the methods that A Series systems provide for allowing code to be
reused by different programs. Some of the other methods are

• Compile-time options

You can use a $INCLUDE option in a program source file. At compilation, the
compiler inserts text from a separate source file specified by the $INCLUDE option.
This option is discussed in the manuals for each programming language.

• Binding

This technique enables you to to insert a compiled procedure from one object code
file into a separate object code file. This technique is documented in the A Series
Binder Programming Reference Manual.

• Libraries

This technique enables a process to dynamically invoke a procedure in another
running process. This technique is described in the Section 18, "Using Libraries."

All of these methods have their virtues. Compared to the $INCLUDE option or binding,
tasking has the advantage of enabling you to maintain the shared module separately
from the programs that call on it. You can make changes to the module without having
to recompile another program or rerun the Binder.

8600 0494-000 1-9

Understanding Basic Tasking Concepts

On the other hand, both the $INCLUDE option and binding have the advantage of
enabling you to insert an external procedure directly into the source or object program.
Because the inserted procedure is treated by the system as an internal procedure, the
main program can enter the procedure rather than initiating it. This results in savings of
processor time and memory.

Compared to libraries, tasking has a slight performance advantage in some situations.
Initiating a program carries a certain cost in terms of processor time, memory, and so on.
The cost of entering a library procedure varies, and can be higher or lower than the cost
of initiating a process. For the first call on a particular library, the system must initiate
the library process and establish a linkage between the calling program and the library.
Once the library is running, it is more economical to enter a library procedure than to
initiate a process.

Another advantage of the tasking method arises in situations where there already exists
a program that performs a function needed by your application. You can initiate that
program as a process without having to rewrite or recompile the program that performs
the function. Changing the program into a library would require rewriting, and binding
the program into another program requires using the Binder utility.

Using Multiple Languages in an Application

Different programming languages have different unique capabilities. These might
make it easier to implement some types of routines in one language, and other types of
routines in another language. If the same application requires routines in two or more
different languages, then those routines have to be stored in separate source files and
compiled separately.

One way to enable an application to use modules written in different languages is
through tasking. You can accomplish this by using statements that initiate separate
object code files. For example, you can write a COBOL 74 program that initiates another
progr~ written in ALGOL.

A nice thing about this technique is that A Series systems also enable you to pass
parameters between programs written in different languages. The operating system
allows parameters to match as long as they are of compatible types. Section 17,
"Using Parameters," explains which parameter types are considered compatible by the
operating system.

Alternatively, you could use binding or libraries to create an application that uses
modules written in different languages. The advantages of using tasking instead of
binding or libraries are introduced under "Using Programs as Modules" earlier in this
section.

Improving Application Performance

1-10

The definition of performance for an application has two general aspects: measurements
of the resource usage of an application and measurements of the elapsed time of the
application. Resource usage includes total processor time, average memory usage, and

8600 0494-000

Understanding Basic Tasking Concepts

so on. Elapsed time means the total clock time a batch program takes to run, or the
average time an online program takes to respond to a transaction.

If you find that the elapsed time of an application is of crucial importance to your
business, you can use tasking features to help decrease the elapsed time by allowing the
application to use system resources more intensively. The two features that allow you to
do this are process priorities and parallel processing.

A Series systems are designed to be able to execute large numbers of processes
simultaneously. However, each central processor can execute only one process at a time.
The operating system frequently reevaluates the processes waiting for processor service,
and assigns the processor to the process with the highest priority. You can use task
attributes and system commands to control some aspects of process priority, as discussed
in Section 7, "Controlling Processor Usage."

Parallel processing consists of dividing your application into two or more processes that
run concurrently. Parallel processing enables the application to use system resources
more intensively than a single process can. This increased intensity of system resource
usage results because each process typically alternates among using the central
processor, I/O processor, and other resources. With parallel processes, one process can
use the central processor while the other is waiting for an I/O to complete, and so on.

You can create parallel processes by designing one process to initiate another process
of type PROCESS or type RUN. These process types are discussed in Section 2,
"Understanding Interprocess Relationships." .

Limitations of Tasking
If you do not need any of the benefits of tasking described in the preceding subsection,
you can simply implement your entire application as a single program, and use only
procedure entrance statements rath~ than procedure initiation statements. Procedure
entrance uses fewer system resources than procedure initiation, and allows your
application to complete faster and interfere less with other running applications~

Some of the expenses involved in initiating a procedure are

• It takes slightly more processor time than entering a procedure.

• It causes several hundred words of save memory to be allocated for the new process
stack.

• It causes the system to create additional system log entries, and thus adds to general
system overhead.

• It adds to the number of entries visible to the operator in a mix display. It thus tends
to complicate the system operator's efforts to monitor the system.

The performance differences between entering and initiating a procedure are not great
if the procedure is to be executed only once. However, for a procedure that is invoked
many times, the performance loss can slow an application noticeably.

8600 0494-000 1-11

1-12 8600 0494-000

Section 2
Understanding Interprocess Relationships

The relationship between a process and its initiator is defined in terms of three major
properties, which are defined in the following subsections. These properties are
inclusion, flow of control, and dependency. These properties affect the speed and
efficiency with which a process is executed, and the ability of the initiator to interact with
the process. You can control these properties in two ways:

• By choosing among the various process-initiation statements that are available

• By choosing a program structure appropriate to the type of process desired

This section examines these choices and their implications for a family of processes.

Several of the discussions that follow refer to the term parent. This term is defined fully
under "Dependency" in this section. For now, it is enough to know that the initiator of a
process is usually also the parent of that process.

Inclusion
Section 1, "Understanding Basic Tasking Concepts," introduced the distinction between
internal and external procedures, and the· concept that initiating procedures results
in internal or external processes. The differing properties of internal and external
processes are referred to in this guide as inclusion properties. The following are the
inclusion properties of internal and external processes:

• An internal process must be dependent. Similarly, external processes that result
from initiating library procedures or passed external procedures must be dependent.
Only external processes that result from initiating separate programs can be either
dependent or independent. Any attempt to initiate a procedure that is not a
separate program as an independent process causes the error "NON - EXTERNAL
RUN". For an explanation of the difference between dependent and independent
processes, refer to "Dependency" in this section.

• In ALGOL and WFL, internal procedures have access to variables declared globally
in the program. These global variables can serve as a medium for interprocess
communication if the internal procedure is initiated. For information about this
interprocess communication technique, refer to Section 15, "Using Global Objects."

• 'Several task attributes that are inherited by internal processes are not inherited by
external processes. These task attributes include LmRARy, NAME, OPTION,
STACKSIZE, and TADS. For a discussion of task attribute inheritance, refer to the
A Series Task Attributes Programming Reference Manual.

86000494--000 2-1

Understanding Interprocess Relation~hips

Flow of Control
In Section 1, "Understanding Basic Tasking Concepts," control was defined as the path
execution takes among the various statements of a program. In a broader sense, control
is the path execution takes among the statements of a procedure and any procedures
initiated by that procedure. The programmer specifies the type of control path to be
used by choosing the corresponding process initiation statement.

The control path determines whether the initiating process and new process execute in
parallel or by taking turns. If they are executing by turns, the control path specifies
when and how often they take turns before the new process terminates. The following
subsections discuss the types of control paths that are available on U nisys A Series
systems.

Synchronous Processes

When a synchronous process is' initiated, control is transferred from the initiating
process to the new process. In other words, the initiating process stops executing and
the new process begins executing. The initiating process is still considered active during
this period and its process stack still exists. When the new process terminates, the
initiating process begins executing again, starting with the first statement after the
process initiation statement.

Examples of statements that initiate synchronous processes are the CALL statement
in ALGOL or COBOL74 and the RUN statement in Work Flow Language (WFL).
Synchronous processes are sometimes referred to as coroutines, but more properly the
term coroutine has a different use. (Refer to "Coroutines" in this section for details.)

The initiating process can set the attributes of a synchronous process only at initiation
time and can interrogate the attributes only after the synchronous process has
terminated. .

Synchronous processes can be simpler to design than coroutines or asynchronous
processes because you do not have to deal with certain complexities of timing that arise
for these other types of processes.

Asynchronous Processes

2-2

When an asynchronous process is initiated, the necessary memory structures are created
for the new process. Thereafter, the new process and the initiator execute in parallel.
Although they execute at the same time, they do not necessarily execute at the same
speed. It is for this reason that the new process is called asynchronous.

Examples of statements that initiate asynchronous processes are the PROCESS
statement in ALGOL or COBOL74, and the PROCESS RUN or PROCESS
< subroutine> statement in WFL.

Asynchronous processes are useful because, in many situations, two or more processes
running in parallel can do needed work in less elapsed time than a single process. What

8600 0494-000

Understanding Interprocess Relationships

is saved in elapsed time does not necessarily translate into savings in processor or I/O
time, however.

The task attributes of an asynchronous process can be read or assigned by its initiator
while the asynchronous process is executing. This makes it possible for the initiator to
intervene in the execution of the asynchronous process.

A disadvantage to initiating processes asynchronously is that, except in WFL, the
programmer must take special measures to prevent a critical block exit error from
occurring. (See the discussion of "Critical Blocks" in this section.)

Also, initiating processes asynchronously can create ambiguous timing situations
because it is impossible to predict exactly how long a process will take to execute. If an
asynchronous process and its initiator share a data item, such as a global variable, and
both change the value of that data item, it will be difficult to predict the order in which
the changes will occur.

Various methods are used to regulate the timing of asynchronous processes. These
methods are discussed in Section 16, "Using Events."

Coroutines

The term coroutines refers to a group of processes that exist simultaneously but take
turns executing, so that only one of the processes is executing at any given time.
Coroutines offer some of the advantages of asynchronous processes, but generally are
easier to design because coroutines execute in a sequential order that prevents any
ambiguities of timing. The use of coroutines offers the following benefits:

• The ability to execute a procedure repeatedly without incurring the processor time
required to enter or initiate the procedure each time

• The ability to execute a procedure repeatedly without losing the values of objects
declared in the procedure between each execution

Note, however, that coroutines use the processor less efficiently than do asynchronous
processes. Only one coroutine runs at a time, and there might be periods when the
processor is unused because the coroutine is waiting for an I/O operation to complete.
Furthermore, the statements coroutines use to transfer control to other coroutines use
more processor time than the event-related functions that asynchronous processes can
use to suspend or resume each other.

Creating Coroutines

An ALGOL or COBOL74 process can create a coroutine by executing a CALL statement.
The new process and its initiator are referred to as coroutines. When the initiator
executes a CALL statement, the initiator temporarily ceases execution and its stack
state becomes "TO BE CONTINUED". The stack state can be displayed by using the Y
(Status Interrogate) system command. A coroutine with this stack state is referred to as
a continuable coroutine.

8600 0494-000 2-3

Understanding Interprocess Relationships

The new process has one of the stack states that indicate the process is being processed,
or soon will be, such as ALIVE or READY. The new process is referred to as an active
coroutine.

The total nwnber of coroutines increases each time an active coroutine executes a CALL
statement. The new process created is an active coroutine and all others are continuable
coroutines.

The concept of a coroutine is closely related to that of a synchronous process, as
defined in "Synchronous Processes" in this section. Every synchronous process is also
a coroutine; however, not every.coroutine is a synchronous process. An asynchronous
process can execute a CALL statement and thus become a continuable coroutine.

Using Continue Statements

2-4

An active coroutine can transfer control to a continuable coroutine by executing an
ALGOL CONTINUE statement or a COBOL74 CONTINUE or EXIT PROGRAM
statement. For convenience, these are all referred to as continue statements in the
following discussion.

The other programming languages (BASIC, FORTRAN, FORTRAN77, Pascal, PL/I,
RPG, and WFL) do not provide continue statements. Therefore, processes other than
ALGOL or COBOL74 processes can be considered coroutines only in a restricted
sense. For example, a WFL job can create a synchronous offspring by executing a RUN
statement. The stack state of the WFL job then becomes "TO BE CONTINUED".
However, the system does not allow the offspring to use a continue statement to transfer
control to the WFLjob. Instead, the system automatically continues the WFLjob when
the offspring terminates. This act is referred to as an implicit continue' and is discussed
further in "Continuing the Partner Process" in this section.

To understand the effects of a continue statement, suppose an active coroutine called
A executes a continue statement that specifies a continuable coroutine called B. When
the continue statement is executed, the coroutine A ceases execution and coroutine B
resumes execution. In other words, coroutine A becomes a continuable coroutine and
coroutine B becomes an active coroutine. Control passes from coroutine A to coroutine
B. .

Coroutine B can later reverse this situation by executing a continue statement that
passes control back to coroutine A However, control does not always have to pass back
and forth between the same pair of processes. For example, coroutine B might continue
another coroutine called C and that coroutine might then continue coroutine A

Control can pass between coroutines any number of times. In the course of its lifetime,
a coroutine can execute many continue statements applying to any number of other
processes. However, for a continue statement to be successful, it must be executed by an
active coroutine and it must specify a continuable coroutine. The continue statement
results in an "ILLEGAL VISIT" error ifit transfers control to a process that is not a
continuable coroutine. '

Coroutines usually belong to the same process family because continue statements
must explicitly or implicitly specify the task variable of the process to be continued. A

86000494-000

Understanding Interprocess Relationships

process usually has access only to the task variables of processes in its own process
family. Process families are defined under "Process Families" in this section. The means
of accessing the task variables of related processes are discussed under" Accessing Task
Variables" in this section.

Determining Where Execution Resumes

When any coroutine continues an ALGOL coroutine, the ALGOL coroutine resumes at
the point where it left off. Thus, if an ALGOL coroutine executes a CALL statement,
it later resumes with the first statement after the CALL statement. If an ALGOL
coroutine executes a CONTINUE statement, it later resumes with the first statement
after the CONTINUE statement.

By contrast, a COBOL74 coroutine can resume execution at either of two points. If
a COBOL74 coroutine executes a CONTINUE statement or an EXIT PROGRAM
RETURN HERE statement, then the coroutine later resumes at the point where it left
off. However, if a COBOL74 coroutine executes a simple EXIT PROGRAM statement,
then the coroutine later resumes with the first statement in the program. (Certain
limitations on the EXIT PROGRAM statement are discussed under "Continuing the
Partner Process" later in this section.)

Block Structure and Coroutines

Continue statements can occur in any of the procedures executed by a process. For
example, a process can execute a continue statement and, after being continued later
on, can enter another procedure and execute another continue statement. Both of those
continue statements can transfer control to the same coroutine, or they can transfer
control to different coroutines.

If a coroutine uses a continue statement to resume its parent, and the parent exits
the critical block for that coroutine, then the parent is terminated with a "CRITICAL
BLOCK EXIT" error. The methods of preventing a critical block exit are discussed
under "Critical Blocks" in this section.

Continuing the Partner Process

There are two types of continue statements: specific continue statements and general
continue statements.

A specific continue statement is one that specifies a task variable. An ALGOL example
of a specific continue statement is CONTINUE (Tl). A COBOL74 example of a specific
continue statement is CONTINUE Tl. Either of these statements continues the
coroutine specified by the task variable Tl.

A general continue statement does not specify a task variable. In ALGOL, the general
continue statement is CONTINUE. In COBOL74, the general continue statement is
EXIT PROGRAM or EXIT PROGRAM RETURN HERE.

The effect of the general continue statement is to continue the partner process. The
partner process is the process specified by the PARTNER task attribute. This task

8600 0494-000 2-5

Understanding Interprocess Relationships

attribute is said to be task-valued because it accesses the task variable of a particular
process. For a synchronous process, the system assigns the initiating process as the
partner process by default. You can design a program to assign a different task variable
to the PARTNER task attribute. Thereafter, any general continue statements affect the
process with that task variable.

When a synchronous process terminates, the system implicitly continues the partner
process. This is the reason the initiating process usually resumes after a synchronous
process terminates. However, if a synchronous process has another task variable
assigned to the PARTNER task attribute, then the system continues that partner
process rather than the initiating process.

Setting the PARTNER task attribute to a process other than the initiator is not
recommended. Such a practice causes general continue statements or implicit continues
to consume more processor time than they otherwise would. This practice also leads to
source code that is difficult to understand and maintain.

A process can interrogate the P ARTNEREXISTS task attribute to determine whether
the current partner process is in a continuable state. This can be a useful method for
avoiding "ILLEGAL VISIT" errors.

For further information regarding the PARTNER and P ARTNEREXISTS task
attributes, see the discussions of these attributes in the A Series Task Attributes
Programming Reference Manual.

Communication between Coroutines

When an active coroutine becomes a continuable coroutine, or vice versa, objects
declared by the coroutine retain their values and are not reinitialized.

Nevertheless, the values of objects declared by a continuable coroutine can be changed
by any active coroutine having access to those objects. For example, if a process executes
a CALL statement, passing call-by-reference parameters, the process becomes a
continuable coroutine. The offspring process is an active coroutine and can change the
values of the call-by-reference parameters. The offspring process can use this method to
communicate information to the parent pr.ocess. When the parent process is continued,
it can check to see if the parameter values were changed.

Similar considerations apply to the task attributes of a coroutine. An active coroutine
can read or assign the task attributes of other coroutines, including continuable
coroutines. When a continuable coroutine is continued, it can check its task attribute
values to see if any were changed.

Complex Coroutine Structures

2-6

The continue statements implemented on A Series systems enable you to develop
complex coroutine structures that do not exactly correspond to the classical model of
coroutines. A complex coroutine structure is one in which two or more active coroutines
exist at the same time. In a simple coroutine structure, only one of the coroutines is
active at a time.

8600 0494-000

Understanding Interprocess Relationships

A complex coroutine structure can result, for example, if a process called INITP initiates
an asynchronous offspring called PROCp, and then initiates a synchronous offspring
called CALLP. While INITP is waiting for CALLP to complete, INITP is in a "'rO BE
CONTINUED" state. PROCP can, therefore, execute a continue statement that causes
INITP to resume. In this case, PROCP becomes a continuable coroutine and INITP and
CALLP are active coroutines at the same time.

In general, the use of complex coroutine structures is not recommended because they
lack the simplicity that is the primary benefit of using coroutines.

Dependency
The last of the three main properties the programmer can specify for a process is
dependency. To understand the concept of dependency, the programmer must first be
familiar with the following related concepts.

• Critical objects

Every process makes use of certain objects originally declared by another process.
These include the task variable, the procedure that the process is executing, and any
objects passed as actual parameters to the process. In this guid~, these objects are
referred to as the critical objects of the process.

• Parents

When a process is initiated, it receives these critical objects from a process called the
parent. In most cases, the initiator of a process is also the parent of that process.
The exact method for determining which process is the parent of a particular process
is given under "Critical Blocks" later in this section.

Dependency is the relationship between a process and its parent that determines how
these critical objects are stored. For an independent process, the system creates copies
of these critical objects when the process is initiated. For a dependent process, the
system creates references to the objects stored by the parent.

The programmer can specify the dependency of a process by choosing an appropriate
process initiation statement. The dependency of a process remains the same throughout
execution; if it is initiated as dependent, it cannot later become independent, or vice
versa.

To initiate an independent p~ocess, you can use an ALGOL or COBOL74 RUN
statement or a ??RUN (Run Code File) system command. Also, a WFL job submitted
through a START statement is executed as an independent process.

To initiate a dependent process, you can use a CALL or PROCESS statement in ALGOL
or COBOL74, or a RUN statement in Command and Edit (CANDE), Menu-Assisted
Resource Control (MARC), or'WFL.

Many implications result from the choice to initiate a process as dependent Qr
independent. However, the most crucial difference is that an independent process can
continue to exist after its parent has terminated. A dependent process must terminate
before its parent does.

86000494-000 2-7

Understanding Interprocess Relationships

The second most crucial difference between dependent and independent processes
is that a dependent process and its parent can communicate through shared objects,
whereas an independent process and its parent cannot.

Communications Effects

Some objects declared by the parent process can be shared with a dependent process,
but not with an independent process.

For example, a parent can declare a task variable and include it in a process initiation
statement executed by the parent. For a dependent process, the task variable remains
associated with the process for as long as the process exists. After the dependent
process terminates, the task variable continues to store the final task attribute values of
the dependent process (though later assignments can change these values). The parent
can use the task variable to access the task attributes of the process before initiation,
while the process is in use, or after the process terminates. However, for an independent
process, the task variable ceases to be associated with the process once initiation is
complete. Only task attributes assigned to the task variable before initiation have any
effect on the independent process.

Similarly, a procedure declared in the parent can be initiated only as a dependent
process. A separate program, on the other hand, can be initiated as a dependent or
independent process. Thus, an independent process is always an external process.

Like any external process, an independent process is unable to access objects declared
globally in the parent. On the other hand, a dependent process, if it is also internal; can
access objects declared globally in the parent.

Finally, any parameters passed to an independent process must be passed by value. A
dependent process can be passed parameters by name, by reference, or by value.

Flow of Control Effects

The dependency of a process affects the ability of the process to be synchronous or
asynchronous, and the ability of the. parent to exit certain blocks without incurring an
error.

Synchronization

2-8

An independent process is always asynchronous. The initiator of an independent process
continues execution without waiting for the independent process to terminate. By
contrast, a dependent process can be synchronous or asynchronous, depending on the
type of initiation statement that is used. Another difference is that an independent
process can continue executing after its parent has terminated, whereas a dependent
process must terminate before its parent does.

86000494-000

Understanding Interprocess Relationships

Critical Blocks

Another flow of control issue related to dependency is the prevention of critical block
exits. To understand exactly what a critical block exit is and why it is important, you
must first understand the following basic concepts:

• Critical objects

This concept is introduced under "Dependency" earlier in this section. You should
be aware that the critical objects of a process can be stored in more than one process
stack, and they can be stored in more than one activation record in a process stack.
If any block that declares one of these critical objects is exited,. the corresponding
activation record is removed and that critical object ceases to exist. This block-exit
causes the process that is using that critical object to terminate abnormally.

• Critical block

This is a block that includes a definition of at least one critical object and is so
positioned that it is normally exited before any other blocks that declare critical
objects are exited. If you ensure that the parent does not exit the critical block
prematurely, then the other blocks declaring critical objects also are not exited
prematurely.

At this point, the definition of a parent can be further refined as follows: the parent is
the process that owns the critical block of a specified process. In other words, the parent
has entered the critical block and not yet exited that block. A dependent process is said
to be an offspring of its parent.

You need to be concerned with the critical block for a process only if that process is
an asynchronous dependent process or a coroutine. If the process is either of these,
you must take steps to ensure that the critical block is not exited before the process
terminates.

By contrast, if a process is independent, it is not affected by critical block exits. If the
process is synchronous, then the parent ceases execution until the process terminates
and therefo~e has no opportunity to exit the critical block prematurely.

Effects of a Critical Block Exit

When a parent exits an offspring's critical block, the parent is discontinued and the
error message "CRITICAL BLOCK EXIT" is displayed. When the parent terminates,
all its offspring processes currently in use are discontinued and a "PARENT PROCESS
TERMINATED" error message is displayed. .

8600 0494-000 2-9

Understand ing I nterprocessRelationshi ps

Defining the Critical Block

The critical block of a process usually occurs somewhere in the program containing the
statement that initiated the process. Within that program, the critical block is the
procedure of the highest lexical level that contains any of the following items:

• The declaration of the task variable specified in the process initiation statement.

• The declaration of the procedure that was initiated, if it is an internal procedure,
a passed external procedure, or an imported library procedure. The position of a
declared external procedure has no effect on the critical block definition.

• The declarations of any actual parameters passed to the process. (It makes no
difference whether the parameters are passed as call-by-name, call-by-value, or
call-by-reference.)

• Any thunk generated for the process by the compiler. A thunk, which is also
referred to as an accidental entry, is generated if the procedure initiation statement
passes a constant or an expression to a call-by-name parameter. The thunk is located
in the procedure containing the procedure-initiation statement. For an illustration of
the effect of a thunk on the critical block definition, refer to Example 3 in "Critical
Block Examples" later in this section.

Note that the definition of the critical block can be affected if any of the critical objects
are passed as parameters from one procedure to another. If a critical object is passed as
a parameter to a procedure, then for purposes of defining the critical block, the formal
parameter that receives the critical object must be considered to be the declaration of
that critical object. For an illustration, refer to Example 4 in "Critical Block Examples"
later in this section.

There is one exception to the rule about the effects of passing critical objects as
parameters. If a task variable is passed as a parameter to an external procedure, the
critical block is affected by the declaration of the actual parameter rather than the
formal parameter. This exception holds true for all types of external procedures:
separate programs, passed external procedures, and imported library procedures. This
exception also makes it possible for the procedure-initiation statement to reside in a
different program than the critical block does. For an illustration, refer to Example 5 in
"Critical Block Examples" later in this section.

The initiator of a process might or might not also be the parent of that process. This
issue is illustrated by Examples 1 and 2 in "Critical Block Examples" later in this section.

Preventing ALGOL Critical Block Exits

2-10

In ALGOL, the programmer can prevent a critical block exit by including a statement
such as the following at the end of the critical block:

WHILE T~STATUS GTR VALUE(TERMINATED) DO
WAITANDRESET(MYSELF.EXCEPTIONEVENT);

In this example, T is the task variable of the dependent process. This statement causes
the parent to wait on its own EXCEPTIONEVENT task attribute, which is automatically

86000494-000

Understanding Interprocess Relationships

caused by the system whenever the offspring changes status. The program then checks
the status of the offspring and returns to a waiting state if the offspring has not yet
terminated.

Preventing COBOL74 Critical Block Exits

A COBOL74 process cannot receive a critical block exit error for exiting a paragraph or a
section because paragraphs and sections are not blocks. However, a COBOL74 process
can incur a critical block exit error if the process

• Terminates while one of its offspring is in-use

• Exits a bound-in procedure that is the critical block for an offspring

• Exits an imported library procedure that is the critical block for an offspring

Statements such as the following can be included at the end ofa COBOL74 program to
prevent it from terminating before an offspring terminates: .

PROCWAIT SECTION.
P2.

WAIT AND RESET UNTIL ATTRIBUTE EXCEPTIONEVENT OF MYSELF.
IF ATTRIBUTE STATUS OF TASK-VAR-l IS GREATER THAN

VALUE TERMINATED THEN GO PROCWAIT.
STOP RUN.

The preceding example assumes that an asynchronous offspring was initiated using task
variable TASK-VAR-l. The COBOL74 program waits on its own EXCEPTIONEVENT
task attribute, which is automatically caused whenever the offspring changes status.
The program then checks the status of the offspring and returns to a waiting state if the
offspring has not yet terminated.

Automatic Protection from WFL Critical Block Exits

The programmer does not need to include any special statements in WFL jobs to prevent
critical block exits. WFL implicitly waits for the termination of asynchronous processes
initiated by the job. The implicit wait occurs at the end of the subroutine that executed
the process initiation statement.

Critical Block Examples

The following examples illustrate various factors that affect the definition of the critical
block for a process. The more typical cases are presented first.

8600 0494--000 2-11

. Understanding Interprocess Relationships

2-12

. Example 1

In most cases, the initiator of a process is also the parent of that process. However, this
is not always the case. The following ALGOL program is an illustration of the difference
between the parent and the initiator:

100 PROCEDURE TRUEPARENT;
110 BEGIN
120 TASK T1, T2;
130 REAL I;
140
150 PROCEDURE WAITFOR(T);
160 TASK T;
170 BEGIN
180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
190 WAITANDRESET(MYSELF.EXCEPTIONEVENT);
200 END;
210
220 PROCEDURE OFFSPRING(X);
230 REAL X;
240 BEGIN
250 X := 1;
260 END;
270
280 PROCEDURE INITIATOR;
290 BEGIN
300 PROCESS OFFSPRING(I) [T2];
310 END;
320
330 PROCESS INITIATOR [T1];
340 WAITFOR(T1);
350 WAITFOR(T2);.
360 END.

In this example, the procedure TRUEP ARENT initiates the procedure INITIATOR
as an asynchronous process. INITIATOR then initiates the procedure named
OFFSPRING. In this situation, the initiator of OFFSPRING is INITIATOR, but the
paremisTRUEPAREN~

TRUEP ARENT is considered the parent because the declarations of the procedure
OFFSPRING, the task variable T2, and the actual parameter I all occur in the outer
block of TRUEP ARENT. .

8600 0494-000

Understanding Interprocess Relationships

Example 2

In the following ALGOL example, the process called INITIATOR is both the initiator
and the parent of the process named OFFSPRING. INITIATOR is considered the
initiator because INITIATOR includes the task initiation statement that initiates the
OFFSPRING procedure. INITIATOR is considered the critical block for OFFSPRING
because the task initiation statement passes OFFSPRING a parameter declared within
INITIATOR. An invocation of the W AITFOR procedure is added to INITIATOR to
prevent a critical block exit.

100 PROCEDURE OUTERBLOCK;
110 BEGIN
120 TASK TIt T2;
130
140 PROCEDURE WAITFOR(T);
150 TASK T;
160 BEGIN
170 WHILE T.STATUS GTR VALUE(TERMINATED) DO
180 WAITANDRESET(MYSELF.EXCEPTIONEVENT);
190 END;
200
210 PROCEDURE OFFSPRING(X);
220 REAL' X;
230 BEGIN
240 X := 1;
250 END;
260
270 PROCEDURE INITIATOR;
280 BEGIN
290 REAL R;
300 PROCESS OFFSPRING(R) [T2];
310 WAITFOR(T2);
320 END;
330
340 PROCESS INITIATOR [Tl];
350 WAITFOR(Tl);
360 END.

8600 0494-000 2-13

Understanding Interprocess Relationships

2-14

Example 3

The following is an ALGOL example of a case where the presence of a thunk affects the
critical block definition for a process:

100 PROCEDURE OUTERBLOCK;
110 BEGIN
120 TASK T1, T2;
130 REAL A, B, C, 0;
140
150 PROCEDURE WAITFOR(T);
160 TASK T;
170 BEGIN
180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
190 WAITANDRESET(MYSELF.EXCEPTIONEVENT);
200 END;
210
220 PROCEDURE OFFSPRING(X);
230 REAL X;
240 BEGIN
250 C := X;
260 END;
270
280 PROCEDURE INITIATOR;
290 BEGIN
300 PROCESS OFFSPRING(A + B) [T2];
310 WAITFOR(T2);
320 END;
330
340 A:= 2;
350 B:= 5;
360 PROCESS INITIATOR [TI];
370 WAITFOR(T1);
380 END.

In the preceding example, X is a call-by-name formal parameter of the procedure
OFFSPRING. The statement that invokes OFFSPRING passes the expression (A + B)
to the parameter. This creates a thunk at the point of the procedure initiation. The
thunk causes the INITIATOR procedure, rather than the OUTERBLOCK procedure,
to be considered the critical block of OFFSPRING. Because the statement at line 360
initiates INITIATOR rather than entering it, INITIATOR becomes a separate process
that is the parent of OFFSPRING.

86000494-000

Understanding Interprocess Relationships

You can avoid some thunks by making the formal parameter call-by-value rather than
call-by-name. For example, you can avoid the thunk in the preceding example by adding
a line to the procedure heading of the procedure OFFSPRING at line 220. The revised
procedure heading appears as follows:

PROCEDURE OFFSPRING(X);
VALUE X;
REAL X;

This change has the side effect of making OUTERBLOCK the critical block, instead of
INITIATOR.

Example 4

In the following ALGOL example, the location of the critical block is affected by a formal
parameter specification:

100 PROCEDURE OUTERBLOCK;
110 BEGIN
120 TASK Tl, TVAR;
130 REAL I;
140
150 PROCEDURE WAITFOR(T);
160 TASK T;
170 BEGIN
180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
190 WAITANDRESET(MYSELF.EXCEPTIONEVENT);
200 END;
210
220 PROCEDURE OFFSPRING(X);
230 REAL X;
240 BEGIN
250
260
270
280
290
300
310
320
330
340
350

X := X + 1;
WAIT ((10»;

END;

PROCEDURE INITIATOR(T2);
TASK T2;
BEGIN

PROCESS OFFSPRING(I)
WAITFOR(T2);

END;

[T2] ;

360 PROCESS INITIATOR(Tl) [TVAR];
370 WAITFOR(TVAR);
380 END.

In this example, INITIATOR is the critical block for the procedure OFFSPRING,
because the task variable T2 is declared in the' procedure heading of INITIATOR. It
makes no difference that the actual parameter Tl is declared in the outer block. It is

86000494-000 2-15

Understanding Interprocess Relationships

2-16 .

the formal parameter T2 that is mentioned in the procedure invocation statement, and
therefore the declaration of T2 takes precedence.

Example 5

In the following ALGOL examples, the critical block is located in a different program
than the one that contains the process-initiation statement; The following is program
OBJECT/CALL:

100 BEGIN
110 TASK T, T1;
120 PROCEDURE OB (T);
130 TASK T;
140 EXTERNAL;
150 REPLACE T.NAME BY "OBJECT /CALL/2.";
160 PROCESS OB (T1) [T];
170 WHILE T1.STATUS GTR VALUE(TERMINATED)
180 DO WAITANDRESET (MYSELF.EXCEPTIONEVENT);
190 END.

The previous program initiates a separate program called OBJECT/CALL/2, passing a
task variable as a parameter. The following is the program OBJECT/CALL/2:

100 PROCEDURE OB (T);
110 TASK T;
120 BEGIN
130 PROCEDURE X;
140 EXTERNAL;
150 REPLACE T.NAME BY "OBJECT/TASK.";
160 PROCESS X [T];
170 END.

The preceding program uses its task variable parameter to initiate a third program. The
procedure declaration at lines 130 and 140 does not affect the critical block definition,
because it is an external procedure declaration. Note that since the process initiation
statement is PROCESS, and no WAIT statement follows it, the preceding program
finishes executing while the third program, OBJECT/TASK, is still running. However,
no CRITICAL BLOCK EXIT error occurs.

The following is the third program, OBJECT/TASK:

100 BEGIN
110 EBCDIC ARRAY FORMALARRAY[0:119];
120 REPLACE FORMALARRAY BY MYSELF.EXCEPTIONTASK.NAME;
130 DISPLAY (FORMALARRAY);
140 WAIT(MYSELF.ACCEPTEVENT);
150 END.

8600 0494-000

Understanding Interprocess Relationships

This program displays the name of its EXCEPTIONTASK, which, by default, is the
same as the parent. The name it displays is OBJECT/CALL, which is therefore the
parent. Because OBJECT/CALL is the parent, no CRITICAL BLOCK EXIT occurs
when OBJECT/CALL/2 terminates.

Recall the rule about passing task variables to external procedures that is discussed
under "Defining the Critical Block" earlier in this section. It is the declaration of the
actual task variable parameter, at line 110 in OBJECT/CALL, that affects the critical
block definition. The critical block is therefore the outer block of OBJECT/CALL.
However, the process initiation statement occurs in OBJECT/CALL/2. This is the only
type of situation where it is possible for the process-initiation statement and the critical
block to reside in separate programs.

Process Families

A process family is a group of processes that have relationships based on dependency.
These relationships have many effects, including effects on interprocess communication,
handling of printer output, and enforcement of resource usage limits.

Familial Relationships

Each process belonging to a process family is called a member of that process family.
Every process family includes a single independent process as its founding member. The
process family also includes any dependent offspring of that independent process, any
dependent offspring of those offspring, and so on.

Familial terms are used to describe the relationships between the members of a process
family. Of these, parent and offspring are defined under "Critical Blocks" earlier in this
section. A related term is sibling. Offspring processes that have the same parent are
referred to as siblings.

Each offspring of a process is considered a descendant of the process. Any offspring of
the descendants of a process are also considered descendants of the original process.

Conversely, the parent of a process is considered to be an ancestor of the process, and
any ancestors of the parent are also considered to be ancestors of the same process.
Processes having a common ancestor, but not a common parent, are referred to as
cousins. The independent process in a process family is the common ancestor of all the
processes in that family.

Finally, processes are said to be related if they belong to the same process family, and
unrelated if they do not.

A dependent process is dependent on the continued existence of all its ancestors, not
only its parent. This is true because a type of domino effect occurs if any of the ancestors
terminates. The immediate offspring of the terminated process are discontinued with
a "PARENT PROCESS TERMINATED" error. The offspring of the discontinued
processes are, in turn, discontinued with the same error, and so on.

8600 0494-000 2-17

Understanding Interprocess Relationships

In contrast, a member of a process family does not depend on the continued existence
of any of its descendants. For example, the descendants of a process can terminate
abnormally without affecting the process.

Jobs and Tasks

2-18

The independent process in a process family is called the job for that family. The
dependent processes in a process family are referred to as tasks.

Note that, in some older publications, you might find the term task used with a different
meaning than the one defined here. In addition to the meaning given here, task has
sometimes been used to refer to any process, to the offspring of some particular process,
or to any discrete unit of work. These usages are generally avoided in this guide, except
in the terms task attribute and task variable, which have been retained because they are
well known. (More properly, these terms would be process attribute and process variable
because they can apply to either jobs or tasks.)

Certain services that the system provides for a process family are linked to the job for
the family. The job provides the following services:

• Job logging

The job has ajob file associated with it that stores the job log. The job log includes
information about the activities of all the processes in ~he process family. When the
job terminates, the system can issue a printout of the job log, called the job summary.
(The job file for a WFL job includes additional information, which is described under
"Special Types of Jobs" later in this section.)

• Printer output

By default, any printer or punch backup files created by process family members are
saved until the job terminates; they are then grouped together as a single entry in
the print queue.

Operators or programmers can use the following means to determine whether a process
is ajob or a task:

• Process messages

The system displays a "BOJ" message when ajob is initiated and an "EOJ" message
when the job is terminated. For a task, the corresponding messages are "BOT" and
"EOT".

• Job displays

The J (Job and Task Display) system command displays all the process families that
currently exist. The members of each process family appear in hierarchical order,
beginning with the job.

8600 0494-000

Understanding I nterprocess Relationshi ps

• Job number

A task has ajob number that differs from the mix number and indicates the job or
session associated with the task. For ajob, the job number and mix number are
equal. The operator can see the job number and mix number in the output of many
system commands. A process can also read these values from the JOBNUMBER and
MIXNUMBER task attributes.

• Process type

A process can determine whether a particular process is a job by reading the TYPE
task attribute. For WFLjobs, the value is JOBSTACK; for other jobs, the value is
RUN: For tasks, the value is CALL or PROCESS.

Special Types of Jobs

WFL Jobs

The following subsections describe WFL jobs, BDBASE tasks, and MCS sessions, all of
which are special types of jobs and entities that resemble jobs.

A program written in WFL is usually executed as an independent process. Because
of this, the execution of a WFL program is referred to as a WFL job. The TYPE task
attribute of a WFL job usually has a value of JOBSTACK

When a WFL job is submitted from one of the available sources, the system initiates the
WFL compiler.' (The sources for submitting WFL jobs include START commands in
CANDE and MARC sessions, and various statements in programming languages.) The
WFL compiler creates the job file for the WFL job.

The job file for a WFL job contains several kinds of information that are not included in
the job file for any other kind of job. In addition to the logging information, a WFL job
file includes the following:

• A copy of the WFL source program.

• Object code for the job. The job file also serves as the code file for a WFL job.

• Data specifications used by the job. A data specification is a portion of the WFL
source program that can be used as an input file by one or more of the offspring of
the job.

• Job restart information.

WFL jobs have several other properties not sh8red by any other type of process. For
details, refer to Section 4, "Tasking from Programming Languages."

8600 0494-000 2-19

Understanding Interprocess Relationships

BDBASE Tasks

Setting the BDBASE option of the OPTION task attribute causes a task to assume some
characteristics ofajob. The exact effects of the BDBASE option depend on whether it
is assigned before or after initiation of the task. If BDBASE is assigned before task
initiation, then the task receives the following joblike characteristics:

• Its own job file.

• Ability to produce a job summary.

• A mix number equal to its job number.

• "BOJ" and "EOJ" messages.

• Automatic printing, when the BDBASE task terminates, of any backup files created
by the BDBASE task or its descendants. Note that this behavior applies only to
backup files whose PRINTDISPOSITION file attribute has the default value of EOJ.

If BDBASE is assigned after task initiation, then its only effect is to cause default
printing of backup files when the task terminates. Even if BDBASE is assigned before
initiation, it does not make the task into a true job. A BDBASE task differs from a job in
the following ways:

• The BDBASE task usually is not an independent process. (There is no point in
setting BDBASE for an independent process, because such a process already has all
job capabilities.)

• The JOBNUMBER value for a descendant of a BDBASE task does not equal
the MIXNUMBER of the BDBASE task. Rather, the JOBNUMBER equals the
MIXNUMBER of the job at the head of the process family.

• The MYJOB task variable never refers to a BDBASE task. For de~ails, refer to
"MYJOB Task Variable" in this section.

In the past, the main use of the BDBASE option was to cause printer backup files
produced by a task to print when the task terminated, rather than being saved until
the job terminated. However, other Print System features now enable you to provide
the same control over printing, without assigning any other joblike characteristics
to the task. For further information, refer to the discussion of printing in Section 9,
"Controlling Process I/O Usage."

MCS Sessions

2-20

CANDE and MARC sessions have the following job characteristics:

• Job summaries that are produced at the end of the session and that summarize the
activities of all tasks initiated from the session

• Default printing, whe~ the session ends,- of backup files produced by tasks initiated
from that session

.A mix number, also called the session number, that is inherited by the
JOBNUMBER task attribute of tasks initiated from the session

8600 0494-000

Understanding Interprocess Relationships

However, CANDE and MARC sessions are not really jobs because, in fact, they are
not even processes. Each session is merely a dialogue between the user and the
CANDE or MARC software. The MYJOB task attribute has a special meaning for tasks
initiated from CANDE and MARC sessions. For further information, refer to "Access
to Ancestral Processes in CANDE" and "Access to Ancestral Processes in MARC" in
Section 3, "Tasking from Interactive Sources."

Accessing Task Variables

The system automatically provides several task variables, called predeclared task
variables, for use by a process. The process can use these task variables to access task
attributes of certain related members of the process family.

MYSELF Task Variable

A process can access its own task attributes by way of the predeclared task variable
MYSELF.

MYSELF has a special meaning for processes that are descendants of CANDE or MARC
sessions. For more information, refer to Section 3, "Tasking from Interactive Sources."

MY JOB Task Variable

A process can use the predeclared task variable MYJOB to access the task attributes of
its job. When ajob uses MYJOB, it has the same meaning as the MYSELF task variable.

If a BDBASE task, or a descendant of a BDBASE task, uses the MYJOB task variable,
MYJOB does not refer to the BDBASE task. Instead, MYJOB refers to the independent
process that is the eldest ancestor of the BDBASE task and, therefore, the real head of
the process family.. In other words, MYJOB refers to the job.

MYJOB has a special meaning for processes that originate from CANDE or MARC
sessions or from an ODT. For more information, refer to Section 3, "Tasking from
Interactive Sources."

8600 0494-000 2-21

Understanding Interprocess Relationships

Exception Task

2-22

Every process has an associated exception task with which it has a special relationship.
There are two aspects to this relationship:

• Whenever the value of the STATUS task attribute of the process changes, the
system notifies the exception task by causing the EXCEPTIONEVENT task
attribute of the exception task.

• A process can access the task attributes of its exception task by way of its own
EXCEPTIONTASK task attribute. For example, the following ALGOL statement
assigns a value to the TASKVALUE task attribute of the exception task:

MYSELF.EXCEPTIONTASK.TASKVALUE := 5;

The parent of a dependent process is the default exception task of the process. An
independent process, by default, is its own exception task; however, in this case, the
exception task relationship embodies only the second of the aspects in the previous list.
The EXCEPTIONEVENT of the independent process is not caused when the status of
the independent process changes.

A dependent process can use the EXCEPTIONT ASK task attribute to access the task
variable of any of its ancestors. The process can specify EXCEPTIONTASK repeatedly
to access ancestors two or more generations back (for example, the grandparent,
great-grandparent, and·so on). The following statement assigns an attribute to the
grandparent of the process:

MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.SWI := TRUE;

A process' can override the default exception task and assign a different process as the
exception task. The following ALGOL statement specifies that the process identified by
the task variable TV AR be treated as the exception task:

MYSELF.EXCEPTIONTASK := TVAR;

The process assigned as the exception task must be either the process itself or an
ancestor, sibling, or cousin of the process. The exception task cannot be a descendant of
the process. An attempt to assign a descendant as the exception task results in the error
"UP LEVEL TASK ASSIGNMENT".

U nisys recommends that only the process itself or one of its ancestors be assigned as the
. exception task. If a sibling or cousin is assigned as the exception task, then any attempt
to access the exception event of the exception task causes a "NON ANCESTRAL TASK
REFERENCE" error. For example, in such a situation, the following statement would
cause an error:

CAUSE (MYSELF.EXCEPTIONTASK.EXCEPTIONEVENT);

8600 0494-000

Understanding Interprocess Relationships

Assigning a process that is not the parent as the exception task can also have more
subtle side effects. Suppose the task is called T and the parent contains a statement
such as the following:

WHILE T.STATUS GTR VALUE(TERMINATED) DO
WAITANDRESET(MYSELF.EXCEPTIONEVENT);

This statement causes the parent to wait until its exception event is caused, at which
point it checks the status of T. If T has terminated, the next statement in the parent is
executed. If T has not terminated, the parent goes back into a waiting state.

The problem is that, if a parent is not also the exception task for its offspring, then any
changes in the offspring's status do not cause the parent's exception event. Instead,
changes in the task's status cause the exception event of the process assigned as the
exception task. Therefore, the parent continues waiting indefinitely, regardless of any
changes in the task's status.

The same problem can occur in a WFL job that is waiting for an asynchronous task to
complete. Consider the following WFL statement:

DO WAIT UNTIL TVAR IS COMPLETED;

This statement checks the status of the task TVAR whenever the WFLjob's exception
event is caused. If the WFLjob's exception event is never caused, then the job waits
indefinitely, regardless of changes in the status of the task.

Sometimes, however, it is not desirable for the exception event of a process to be caused
whenever the status of any of its offspring changes. For example, the process might be
waiting for a ill (Cause EXCEPTIONEVENT) system command. In this case, each of
the offspring could be assigned itself as its exception task. This assignment prevents any
of the offspring from accidentally causing its parent's exception event.

The MCS that controls a session is the parent of any tasks initiated from that session.
By default, therefore, the MCS is also the exception task for any tasks initiated from
that session.

Partner Processes

The partner process is the process specified by the task-valued task attribute
PARTNER. For a synchronous process, the default value of this attribute is the initiator.
However, a process can assign any task variable to this attribute. A process can use the
PARTNER task attribute as a convenient means of accessing the task attributes of the
partner process. For example, the following ALGOL statement assigns a value to the
TASKV ALUE task attribute of the partner process:

MYSELF.PARTNER.TASKVALUE := 3;

The partner process has a special significance for coroutines. For details, refer to
"Continuing the Partner Process" in this section.

8600 0494-000 2-23

Understanding Interprocess Relationships

Other Task Variables

A programmer can make it possible for two sibling or cousin processes to access each
other's task variables by declaring the task variables in a common ancestor of the two
processes. Internal processes can access task variables that are declared globally in the
same object code file as the internal procedure declaration. Task variables can also be
passed as parameters to offspring processes.

Private Processes

A private process is a process whose task attributes cannot be altered by any of its
descendant processes. Assigning the private process option to the OPTION task
attribute causes the process to become a private process. Any descendant process that
attempts to access the task attributes of a private process is terminated with the error
"NON OWNER WRITE ACCESS OF A PRIVATE TASK".

Both CANDE and MARC are private processes.

Setting Resource Limits

2-24

Any resource limits attached to ajob are propagated downward through all the job's
descendants. Resource limits are stored in the values of the task attributes DISKLIMIT,
ELAPSEDLIMIT, MAXCARDS, MAXIOTIME, MAXLINES, MAXPROCTIME,
PRIORITY, RESOURCE, SAVEMEMORYLIMIT, TEMPFILELIMIT, and WAITLIMIT.
Information about the amount of resources a particular process has used is stored
in the task attributes ACCUMIOTIME, ACCUMPROCTIME, ELAPSEDTIME,
and TEMPFILEMBYTES. If the accumulated usage of a resource rises above the
maximum allowed, the process terminates abnormally. Most of these resource limits are
propagated in two ways:

• When a task is initiated, by default each resource limit for the task is assigned
the difference between the parent's 'own limit for the resource and the parent's
accumulated usage of the resource. For example, if the parent's MAXPROCTIME is
100 and its ACCUMPROCTIME is 75, then the task is assigned a MAXPROCTIME
of 25. The parent's own MAXPROCTIME and ACCUMPROCTIME values are not
affected. ~e parent can assign resource limits to the task through task equation,
but the values are ignored unless they specify lower limits than the task would
receive by default.

• When a task terminates, the values of its accumulated usage attributes are added
to the accumulated usage attributes of the task's job. If this addition causes any
accumulated usage attribute of the job to be assigned a value greater than the
corresponding maximum usage attribute, the job is abnormally terminated. The
termination of the job in turn causes the termination of all the other members of the
process family.

The resource-limiting attributes of a task cannot be set above the values of the
corresponding attributes of the job. The MAXPROCTIME and MAXIOTIME task
attributes can be set above the job values for an inactive task, but when the task is
initiated, the values of these task attributes are automatically reduced to a value within
the allowed limits.

8600 0494-000

Understanding Interprocess Relationships

If a job is a WFL job, then its resource-limiting attributes can inherit values specified
by the queue attributes of the job queue from which the WFL job was initiated. For
further information on queue limits, refer to Section 4, "Tasking from Programming
Languages." .

8600 0494-000 2-25

2--26 86000494-000

Section 3
Tasking from Interactive Sources

An interactive tasking source is one that enables you to enter at a terminal commands
that initiate, monitor, and control processes. This section reviews the tasking capabilities
of the most important sources for interactive tasking: Command and Edit (CANDE),
Menu-Assisted Resource Control (MARC), and the operator display terminal (ODT).

The information in this section can help you decide which of these interfaces best serves
your needs. This section also explains considerations to keep in mind when writing
programs that are intended to be initiated from these sources.

Note that many users access applications primarily through Communications
Management System (COMS) Clirect windows. This interface is not reviewed here
because the direct window interface does not provide any direct means to control
processes. Rather, COMS initiates and controls direct window programs automatically,
within various parameters set by the system administrator. For information about direct
window programs, refer to the A Series Communications Management System (COMS)
Programming Guide.

CANOE
CANDE is a message control system (MCS) that enables you to interactively perform
functions such as file editing, program compilation, and program execution. You initiate
communications with CANDE by logging on at a terminal controlled by CANDE, or by
opening a CANDE window dialogue on a terminal controlled by COMS. Your interactions
with CANDE between the times you log on and log off are referred to as a session.
CANDE assigns each session an identifying number called the session number.

CANOE Tasking Capabilities

CANDE offers a number of process-initiation commands, as well as other commands for
monitoring or controlling processes. For details about any of the commands discussed in
the following subsections, refer to theA Series CANDE Operations Reference Manual.

Initiating Dependent Processes from CANOE

You can initiate a task from a CANDE session by using the RUN command. (EXECUTE
is a synonym for the RUN command.) The RUN command can pass only a single string
parameter to a program.

The CANDE RUN command is unique in that it usually specifies a program by its source
file title rather than by its object code file title. CANDE takes the file title specified
in the RUN command and looks for an object code file with the same title, except that

8600 0494-000 3-1

Tasking from Interactive Sources

3-2

the object code file title is prefixed by "OBJECT/". For example, the object code file
OBJECT/TEST can be initiated by the command RUN TEST.

However, if you prefix the file title with a dollar sign ($), then CANDE interprets the file
title as an object code file title. You can use this form of the RUN statement to initiate
programs whose object code file title does not begin with "OBJECT/". An example of
such a command is RUN $ACCOUNTS/INPUT, which initiates the object code file
named ACCOUNTS/INPUT.

CANDE also assumes that the file titie is an object code file title if the file title is
nonusercoded. You can indicate that a file title is nonusercoded by including an
asterisk (*) at the start of the title. For example, you can initiate an object code file
titled *SYSTEM/FILEDATA with the command RUN *SYSTEM/FILEDATA.

If you omit the file title from the RUN statement, CANDE assumes the current work
file is the source program. If no object code file with the related file title exists, or
if the object code file does not reflect recent changes to the work file, then CANDE
automatically compiles the work file and executes the resulting object co~e file.

The task is asynchronous (that is, it runs in parallel with the CANDE software that
initiated it). However, the process appears to the user to be a synchronous task because
most CANDE commands are not available while the task is running. Only control
commands (commands, such as ?Y, that start with a question mark) can be used. It is not
possible to issue file maintenance or editing commands or to initiate another task until
the first task terminates.

An alternative to the RUN command is the UTILITY command. The UTILITY
command behaves like the RUN command in most respects. However, the UTILITY
command enables you to append to it unquoted text that is passed as a string parameter
to the program. If you do not append any text, the UTILITY command passes an empty
string parameter. The following are examples of UTILITY commands and the equivalent
RUN commands:

U DAILY UPDATE OUTPUT = PRINTER
RUN DAI LY /UPDATE ("OUTPUT=PRINTER")

U DAILY UPDATE
RUN DAILY /UPDATE("")

The UTILITY command also automatically passes certain task equations and file
equations to the program initiated. These equations make it possible for the program
to use the unsaved work file, work source, or work object associated with the session.
Certain utilities, such as the Editor, are designed to accept these task and file equations.
Such programs must be initiated with the UTILITY command instead of the RUN
command. For details about the task and file equations that are passed, refer to the
UTILITY command discussion in the A Series CANDE Operations Reference manual.

8600 0494-000

Tasking from Interactive Sources

Initiating Compilations from CANOE

You can use the COMPILE command to compile a program. This command allows you
to specify the compiler to use, the input file titles, the object code file title, and task
equations for the compiler and the resulting object code file. For example:

COMPILE DAILY/UPDATE/PATCH AS DAILY/UPDATE/NEW WITH COBOL74;
COMPILER FILE SOURCE = DAILY/UPDATE/SOURCE;
PRIORITY = 40;

This example initiates the COBOL74 compiler, specifying a primary input file called
DAILY/UPDATE/PATCH and a secondary input file called DAILY/UPDATE/SOURCE.
The object code file that results is called OBJECT/DAILY/UPDATE/NEW. The
compiler stores the PRIORITY assignment in the resulting object code file, so that
OBJECT/DAILY/upDATE/NEWreceives a default PRIORITY value of 40 whenever it
is run.

The COMPILE command can be used more simply than it is in the preceding example.
Suppose that DAILY/UPDATE is your work file. Simply entering COMPILE in your
CANDE session is sufficient to compile your work file. CANDE chooses the compiler that
matches the file type of the source file. The resulting object code file consists of the
source file title with "OBJECT/" prefixed (for example, OBJECT/DAILY/UPDATE.)

The COMPILE command cannot cause the execution of the resulting object code file.
However, a simple RUN command compiles and runs the work file if no object code file
exists.

Initiating Utilities from CANOE

The RUN and UTILITY commands can be used to initiate a variety of system utility
programs such as FILE COPY, LOGGER, and so on. However, CANDE also includes a
number of specialized commands that you can use to initiate particular utilities. The·
following are the commands and the names of the corresponding utilities:

Command

BACKUPPROCESS

DCSTATUS

LFILES
LOG

Submitting WFL Jobs from CANOE

Utility

Backup Processor

DCSTATUS

FILEDATA

LOGANALYZER

You can submit WFL programs from CANDE sessions using the START or WFL
command. The START command submits a WFL program that is stored in a disk file.
The WFL command enables you to enter WFL statements directly at the terminal.

The START command can pass any number or type of parameters that are expected
by the WFL program. In addition, you can use the FOR SYNTAX. clause for syntax

8600 0494-000 3-3

Tasking from Interactive Sources

checking. This clause causes the program to be compiled, but not executed, and displays
information about any syntax errors in the WFL program. You can also assign the
STARTTIME task attribute to delay initiation of the program. However, you cannot
assign any other task attributes to the program.

While the WFL program is compiling, only CANDE control commands are available.
If you enter any other CANDE commands during this period, CANDE queues the
commands and executes them when the compilation is finished. However, after the WFL
program is compiled and entered in ajob queue, all CANDE commands are available
again. The WFL program executes as ajob and can have ajob summary or printer
backup files associated with it. By default, these files are queued for printing when the
WFL program terminates.

You can use the WFL command to submit one or more WFL statements. Simply enter
WFL, followed by the WFL statements. You can omit the ?BEGIN JOB and ?END JOB
statements. The WFL statements can include all the constructs defined in WFL with the
exception of data specifications and ST ARTTIME specifications.

When you submit WFL input by way of the WFL command, only CANDE control
commands are available while the WFL input compiles and executes. Any other CANDE
commands that you enter during this period are queued for later execution. By default,
any backup files created by the WFL process are saved with the CANDE session. The
files are queued for printing when you end the CANDE session.

TheCANDE ADD, COPY, and PRINT commands correspond to the WFL commands of
the same names. When you enter any of these commands, CANDE passes it to WFL for
execution.

Access to Task Attributes in CAN DE

3-4

For each session, CANDE stores information about a few selected task attributes.
CANDE requests some of this information from the user at log-on time and obtains most
of the rest from usercode attributes defined in the USERDAT AFILE. CANDE assigns
these task attribute values to any process initiated by that session (for example, by a
CANDE RUN command). The task attributes stored by CANDE include the following:

ACCESSCODE

CHARGE

CONVENTION

DESTNAME

FAMILY

. JOBNUMBER

JOBSUMMARY

JOBSUMMARYTITLE

LANGUAGE

NOJOBSUMMARYIO

PRINTDEFAULTS

PRIORITY

SOURCESTATION

STATION

USERCODE

For a task initiated from a CANDE session, CANDE assigns a JOBNUMBER equal to
the session number. Ajob initiated from a CANDE session receives a JOBNUMBER
equal to its MIXNUMBER.

You can use CANDE commands to change the values of some of the session attributes.
By using these commands, you create new defaults that are applied to all tasks initiated
later in that session. The ACCESS, CHARGE, DESTNAME, FAMILY, and LANGUAGE

86000494-000

Tasking from Interactive Sources

commands "each display or assign the session attribute of the same name. Additionally,
the PDEF command displays or assigns the PRINTDEFAULTS session attribute.

You can also assign task attributes to specific processes through the use of task
equations. Task equations can be appended to most CANDE process initiation"
statements, including RUN, UTILITY, COMPILE, and the various special-purpose
commands for initiating utilities. Task equations can assign values to all but task-valued
or event-valued task attributes, such as EXCEPTIONT ASK or EXCEPTIONEVENT.
If a task equation conflicts with task attribute inheritance, the task equation takes
precedence. For example, the following CANDE command assigns to a process a
LANGUAGE value different from the LANGUAGE value of the session:

RUN DRIVER;LANGUAGE = FRANCAIS

For information about the task attributes available in CANDE, refer to the A Series
CANDE Operations Reference Manual.

Monitoring and Controlling Processes in CANOE

Any messages generated by a task initiated from a CANDE session are automatically
displayed at that session, including any "BOT", "EOT" , DISPLAY, and RSVP messages
and error or warning messages. However, for processes indirectly associated with a
session, the display of messages is optional. Processes indirectly associated with a
session include WFL processes initiated by a START or WFL command, the descendants
of such processes, and the descendants of any task initiated from a session.

The CANDE session option MSG controls the display of messages by processes
indirectly associated with a session. While MSG is set, all messages generated by such
indirect processes are displayed at the session. While MSG is reset, all such messages
are suppressed. CANDE sets the MSG option to TRUE if the usercode attribute
CANDEGETMSG is set for the usercode of the session. You can also set the MSG
option to TRUE for a session by entering a CANDE SO MSG command. You can use the
equivalent CANDE control command, ? SO MSG, even when the cstation is busy.

A number of CANDE control commands are available for monitoring and controlling
particular processes. You can use these commands to monitor or control any process that
has the same usercode as the session usercode. This includes processes initiated from
the current session as well as processes initiated from other sources, such as MARC or
theODT.

Most CANDE commands related to process control correspond to system commands
with similar names. Some restrictions and differences in spelling apply to the CANDE
versions of these commands. For further information, refer to "Tasking Command
Equivalents" later in this section.

The system assigns a unique mix number, also known as the session number, to each
CANDE session. The CANDE session does not appear as a process in mix display
commands. However, the session mix number does appear in the output from two
system commands: Y (Status Interrogate) and C (Completed Mix Entries). The output
from these commands shows both the job number and the mix number of a process. If

8600 0494-010 3-5

Tasking from Interactive Sources

the process is a task, and it was initiated from a CANDE session, then the job number
shown is actually the CANDE session number.

Saving CANOE Commands for Later Use

You can achieve some of the convenience of programmatic task initiation and control by
saving CANDE commands in a file for later use. You can use the DO or SCHEDULE
command to execute the commands in the file. You can reuse the file as many times as
desired.

The DO command takes effect immediately and prevents you from using most other
commands in th~ session until the DO file is completed. However, you can use the
SCHEDULE command to cause the file to be executed separately from your current
session or at a later time.

Files that store CANDE commands are different from programs in that they are not
compiled and are not executed as separate processes. Their process control abilities
are more limited than those ofWFL, ALGOL, or COBOL74 programs, because no
conditional statements or variables are available.

CANOE Programming Considerations

When you design a program to be run from CANDE, you need to be aware of
CANDE features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from CANOE

If you are designing a program to be initiated from CANDE, be aware that the program
can receive only one parameter from the RUN or UTILITY command that initiates it.
This parameter appears as a string to the user, but in the program it must be declared as
type Real Array (or compatible parameter type) with an unspecified lower bound. For
information about Real Array parameters and compatible parameter types, refer to
Section 17 , "Using Par~eters."

Access to Ancestral Processes in CANOE

3-6

If you initiate a task from a CANDE session, and that task accesses its own
EXCEPTIONTASK task attribute, the system interprets EXCEPTIONTASK as a
reference to the CANDE MCS. The task can use the EXCEPTIONTASK task attribute
to query the values of the task attributes of the CANDE MCS. However, if the task
attempts to modify the task attributes of the CANDE MCS, the task is terminated with
a task attribute error. This error occurs because CANDE runs with the private process
option of the OPTION task attribute set to TRUE. '

For a task initiated through a CANDE RUN command, the MYSELF task variable, the
MYJOB task variable, and the PARTNER task attribute all have the same meaning.
In most cases, each of these constructs refers to the task itself. However, when

86000494-010

Tasking from Interactive Sources

these constructs are used to access the JOBSUMMARY, JOBSUMMARYTITLE, and
NOJOBSUMMARYIO task attributes, these task attributes affect the job summary of
the CANDE session. For example, if the task sets the JOBSUMMARY attribute of the
MYSELF attribute to SUPPRESSED, the job summary for the session is suppressed.

The following ALGOL example assigns a value of SUPPRESSED to tl;te JOBSUMMARY
task attribute of the session. If this program is initiated by a CANDE RUN command,
the program prevents ajob summary from being printed when the session ends.

BEGIN
MYJOB.JOBSUMMARY := VALUE(SUPPRESSED);

END.

For WFL statements submitted through a CANDE WFL command, the MYJOB
task variable refers to the WFL compiler process. The NAME of the WFL compiler
process in this case is CANDE WFL, prefixed by the usercode of the session. The
MYSELF task variable refers to the task that is executing the compiled WFL
statements. The NAME of this task is WFLCODE, prefixed by the usercode of
the session. MYSELF(JOBNUMBER) returns the CANDE session number, but
MYJOB(MIXNUMBER) returns the mix number of the WFL compiler process.

When statements submitted through the WFL command use the MYJOB construct
to alter job summary-related task attributes, these changes affect the job summary of
the CANDE session. However, if the MYSELF variable is used to access these task
attributes, there is no effect on the job summary of the CANDE session.

The MCSNAME task attribute of tasks initiated from CANDE sessions typically returns
a value of SYSTEM/CANDE, which might or might not be preceded by an asterisk (*).
Note that the MCSNAME value can be different if CANDE was installed at your site
under a different name.

Communicating ·with CANDE Terminals

CANDE automatically assigns the logical station number (LSN) to the STATION and
SOURCESTATION task attributes of processes initiated from CANDE sessions. Most
programs initiated from CANDE can therefore declare and open a remote file at the
originating CANDE session without having to explicitly assign the STATION task
attribute or otherwise indicate where the remote file is to be opened.

However, for WFLjobs submitted by a START command, CANDE does not assign the
LSN to the STATION task attribute. CANDE does not assign a STATION value to such
WFL jobs because these WFL jobs are typically intended to run independently of the
originating CANDE session. In fact, a WFL job or offspring task that opens a remote file
at a CANDE session becomes to some extent dependent on that session. If the user logs
off and the process attempts to write to·the remote file, the process receives an I/O error.

8600 0494-000 3-7

Tasking from Interactive Sources

It is nevertheless possible for a WFL job submitted through a CANDE START command
to initiate a task that opens a remote file. However, you must take certain precautions to
enable the task to open the remote file successfully. The simplest precaution is for the
job to assign its own SOURCESTATION value to it~ STATION value before initiating
any tasks. For example:

?BEGIN JOB;
MYSELF(STATION = MYSELF(SOURCESTATION));
RUN OBJECT/X;
RUN- OBJ ECT /Y;
?END JOB

An alternate precaution is for the jobto file-equate the TITLE attribute of a program's
remote file to the job's SOURCENAME task attribute value. Like the STATION
assignment shown previously, this file equation causes the remote file to be opened at the
originating station. In the following example,' REM is the internal name of a remote file
used by the program OBJECTIPROG:

?BEGIN JOB;
RUN OBJECT/PROG;

FILE REM(TITLE = #MYSELF(SOURCENAME));
?END JOB

MARC
MARC is a COMS transaction processor that enables you to perform system operations
and tasking functions. You initiate communications with MARC by opening the MARC
window. Depending on the way your terminal is defined to COMS, the MARC window
might appear automatically after you log on to COMS. If it does not, you might still be
able to open the MARC window by entering the command ?ON MARC. Your interactions
with MARC between the time you open the MARC window and the time you log off or
close the window are referred to as a session. MARC assigns each session an identifying
number called the session number.

MARC Tasking Capabilities

3-8

MARC provides the only menu-assisted interface to tasking. You can use MARC menu
selections or commands to submit WFL jobs or to initiate programs written in any
language.

MARC offers commands and menu selections for initiating dependent processes,
submitting WFL jobs, and initiating utilities. Once the process is initiated, MARC
displays the TAsk command in the Action field of the current screen. By transmitting
this command, you can display a special screen called TASKSTATUS. You can use the
TASKSTATUS screen to monitor and control the process.

Because the system administrator can modify MARC to add or delete functions, some
features mentioned here might not be available at your site. The descriptions apply to
the version of MARC supplied by Unisys.

8600 0494-000

Tasking from Interactive Sources

The following paragraphs provide an overview of MARC tasking capabilities. For further
details about these features, refer to the A Series Menu-Assisted Resource Control
(MARC) Operations Guide.

Initiating Dependent Processes from MARC

You can enter RUN in the choice field of the MARC home menu to initiate a program
as a dependent process. This selection can initiate a program written in any language
except WFL. Entering this selection displays the RUN screen. You can use the RUN
screen to specify the object code file title, any parameter that is to be passed, and any
assignment to the TASKV ALUE task attribute. You enter TASKV ALUE assignments in
the Value field of the screen.

An alternate method of initiating dependent processes is by using the RUN command.
You can enter this command in the Action field of a screen or on the COMND screen.
The syntax of this command is similar to the WFL RUN statement, except that the
command can pass only a single parameter. Depending on the requirements of the
program being initiated, the parameter can be a string of characters enclosed in
quotation marks (") or a number with no quotation marks. The following are both valid
examples:

RUN OBJECT /RECOMM(IIREPORT=DAILY")

RUN OBJECT/TELEMAX(346)

Initiating Compilations from MARC

You can initiate compilations from MARC in either of the following ways:

• By using the MARC WFL command to submit a WFL COMPILE statement. For
details, refer to "Submitting WFL Jobs from MARC" later in this section.

• By using the EDIT screen to initiate an Editor session. While in the Editor, you can
use the Editor COMPILE command to initiate a compilation.

Initiating Utilities from MARC

You can initiate utilities by using either the RUN screen or the RUN command.
However, you can also use either of two special screens, UTIL or TOOLS, which list
many utilities as selections. By choosing one of the selections on the UTIL or TOOLS
screen, you cause the corresponding utility to be initiated. If parameters are needed,
MARC prompts you to supply them.

Submitting WFL Jobs from MARC

You can use the START selection on the MARC screen to submit a WFL program that
is stored in a disk file. Entering this selection displays the START screen. Use this
screen to enter the file title of the WFL program and any parameter values to be passed

8600 0494-000 3-9

Tasking from Interactive Sources

to the program. You can also use this screen to enter a value for the ST ARTTIME task
attribute of the WFL program.

WFL programs stored in disk files can also be initiated by way of the START command.
The START command can pass parameters to the WFL program, but cannot include a
ST ARTTlME specification.

You can use the MARC WFL command to submit WFL statements directly at the
terminal. Simply type the word WFL, followed by the statements that constitute the
WFL program. You can omit the ?BEGIN JOB and ?END JOB statements. The
program cannot include any WFL constructs except data specifications or a STARTTIME
specification. For example, the following WFL input initiates another program and
assigns it a task attribute:

WFL RUN OBJECT/INVENTORY;FAMILY DISK = DPMAST OTHERWISE DISK

Monitoring Processes Initiated from MARC

3-10

When you initiate any dependent process, WFL job, or utility from a MARC session, the
TASK command appears as a prompt on the current screen. Entering TASK in the
Action field displays the TASKSTATUS screen. This screen displays information about
the process and includes a field in which you can enter process control commands. You
can leave the TASKSTATUS screen at any time by entering one of the screen traversal
commands, such as HOME or GO, that are displayed. As long as the process is run:riing,
you can return to the TASKSTATUS screen by using the TASK command.

The TASKSTATUS screen includes fields that display various types of information for
the process. The following are the fields and their meanings:

• The Task field displays the mix number and the name of the process.

• The Parameter field, if it appears, displays the value of the parameter passed to the
process.

• The Task Status field displays the CWTent stack state of the process. For a
discussion of what the stack states mean, refer to Section 6, "Monitoring and
Controlling Process Status."

• The Elapsed field displays the time elapsed since the process was initiated.

• The Processor field displays the processor time used by the process.

• The I/O field displays the accumulated I/O initiation time for the process.

• The area below the Elapsed, Processor, and I/O fields displays messages generated
by the process, including "BOT", "EDT", DISPLAY, and RSVP messages.

You can enter process control commands in the Action field. The list of available actions
below the Action field includes the most common system commands used for process
monitoring and control. You can enter any of the listed commands without having to
prefix them with the mix number of the process; MARC automatically prefixes the
command with the mix number listed in the Task field. You can also enter system
process control commands that are not listed as actions, but you must prefix them

8600 0494-000

Tasking from Interactive Sources

with the mix number of the process. For a list of system commands related to process
monitoring and control, refer to "Tasking Command Equivalents" in this section.

If you submit a WFL job by way of the START screen or the START command, then the
process control commands are displayed only during the compilation of the job. However,
you can enter these commands even after they no longer appear as prompts, provided
that you prefix them with a mix number. You can prefix them with the mix number
of the job or of any task initiated by the job. The T ASKSTATUS screen continues
to display any messages generated by the job as it executes. You can initiate another
process as soon as the job has finished compiling and has been inserted in a job queue.

However, if you submit a WFL job by way of the MARC WFL command, the process
control commands continue to be displayed as the job executes. Also, it is not possible to
initiate new processes until the job terminates.

If you initiate a process that initiates offspring, then any messages created for the
offspring are included with the other process messages on the TASKSTATUS screen.
You can enter process control commands for the offspring in the Action field, but you
must always prefix the command with the mix number of the offspring process.

You can usually learn the mix number of the offspring by looking at its "BOT" message
in the process messages display. However, if MARC has scrolled this message off the
screen, you can learn the mix number by entering the VIEW command in the Action
field. This command causes MARC to display the TASKVIEW screen, which lists the mix
numbers and the names of the original process and all its descendants in a hierarchical
order.

You cannot enter process control commands on the TASKVIEW screen. You can display
the TASKSTATUS screen for a particular offspring by entering the mix number of the
offspring in the Action field of the TASKVIEW screen. You can then enter process
control commands on that TASKSTATUS screen. Alternatively, you can return from
the TASKVIEW screen to the original TASKSTATUS screen by entering the RETURN
command in the Action field.

Monitoring Other Processes in MARC

All system commands related to process monitoring and control can be entered through
MARC, except for the primitive commands (commands preceded by two question
marks). You can use these commands to monitor or control processes initiated from the
current MARC session or processes initiated from other sources, such as CANDE or an
ODT.

You can enter system commands on the COMND screen or in the Action field of any
screen that displays "COmnd" as a prompt. However, system commands that you enter
through MARC are screened for security. Many system commands are available only if
the usercode of the session has privileged, SYSTEMUSER, or security administrator
status. For details, refer to "Tasking Command Equivalents" in this section.

Each MARC session receives a unique mix number, also called the session number, which
appears in the output from some system commands, including mix display commands.
The MARC session does not appear as a process in mix display commands. However, the

86000494-000 3-11

Tasking from Interactive Sources

session mix number does appear in the output from two system commands: Y (Status
Interrogate) and C (Completed Mix Entries). The output from these commands shows
both the job number and the mix number of a process. If the process is a task, and it
was initiated from a MARC session, then the job number shown is the MARC session
number.

Communicating with Interactive Processes in MARC

3-12

A special window called a task window is created if a remote file is opened by a process
run from a MARC session. In most cases, when the process opens the remote file,
MARC automatically displays the task window. The current screen disappears and
MARC displays the following message:

Enter ?MARC for task status

If the process writes to the remote file, the messages appear in the task window. If you
type and transmit any text in the task window, MARC interprets this as input to the
remote file. The only exceptions are the ?MARC command and other Communications
Management System (COMS) commands that are prefixed with question marks.

You can return to the TASKSTATUS screen by entering the ?MARC command. You can
return to the task window by· entering the TASK command in the Action field of any
screen.

If you are on the task window when the process terminates, then MARC returns you
to the originating screen. In some cases, MARC prompts you to press the SPCFY
key before making this transfer. For information about why this happens, refer to
"Communicating with MARC Terminals" later in this section.

Note that if you submit a WFLjob through the START command and the job initiates a
task that opens a remote file, you are not automatically transferred to the task window
when the remote file is opened. When the task opens the remote file, a message of the
following form appears on the T ASKSTATUS screen:

<time> <mix number> Remote window <remote window name> OPEN.
INTNAME = <internal name>. PROGRAM = <object code file title>.

Note the < remote window name> value in this message. You can transfer to the
remote window by entering a command of the form:

?ON <remote window name>

You can return to the TASKSTATUS screen by entering the following command:

?ON MARC

The shorter form, ?MARC, is not accepted in this situation.

8600 0494-000

Tasking from Interactive Sources

Access to Task Attributes in MARC

For each session, MARC stores information about a few selected task attributes. MARC
requests some of this information from the user at log-on time and obtains the rest from
usercode attributes defined in the USERDATAFILE. MARC assigns these task attribute
values to any process initiated by that session (for example, by a MARC RUN command).
The task attributes stored by MARC include the following:

BACKUPFAMILY

CHARGE

CONVENTION

DESTNAME

EXCEPTIONTASK

FAMILY

JOBNUMBER

JOBSUMMARY

JOBSUMMARYTITLE

LANGUAGE

NOJOBSU M MARYIO

PRIORITY

PRINTDEFAULTS

SOU RCESTATION

STATION

USERCODE

For a task initiated from a MARC session, MARC assigns a JOBNUMBER equal to the
session number. Ajob initiated from a MARC session receives a JOBNUMBER equal to
its MIXNUMBER.

Certain of the session attributes established for MARC dialogue 1 are inherited by any
sessions started in other MARC dialogues; these session attributes are USERCODE,
ACCESS CODE, CHARGE, FAMILY, and LANGUAGE.

MARC provides commands and menu selections that you can use to set the values of the
. following attributes: DESTNAME, FAMILY, JOBSUMMARY, JOBSUMMARYTITLE,

LANGUAGE, NOJOBSUMMARYIO, and PRINTDEFAULTS. The other attributes in
the previous list cannot be accessed by the user.

You can also assign task attributes to specific processes by using task equations. You can
enter task equations in MARC in either of the following ways:

• FILEEQUATE screen

The RUN screen includes boxes you can fill to indicate that file equations or task
attribute assignments are needed. If file equations are needed, the FILEEQUATE
screen is displayed. You can enter any number of file equations. Implicitly, these are
assignments to the FILECARDS task attribute. If task attribute assignments are
needed, the TASKATTR screen is displayed. This screen includes fields for assigning
selected task attributes. Only the following task attributes can be assigned:
BDNAME, DESTNAME, LANGUAGE, MAXLINES, OPTIONS, STATION, TADS,
and SWI through SW8.

• RUN command

When you initiate a task by using a RUN command, you can include task equations
that assign task attribute values for the task. The following RUN command includes
several task equations:

RUN OBJECT/PROGA;TASKVALUE=l;DISPLAYONLYTOMCS=TRUE;FILE OUT=OUT/FILE;

86000494-000 3-13

Tasking from Interactive Sources

MARC Programming Considerations

When you design a program to be run from MARC, you need to be aware of
MARC features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from MARC

If you are designing a program to be initiated from MARC, be aware that the program
can receive only one parameter from the RUN screen or RUN command that initiates it.
If the user encloses the parameter in quotation marks ("), MARC passes the parameter
as type Real Array with an unspecified lower bound. If the user does not enclose
the parameter in quotation marks, MARC passes the parameter as type Real. For
information about the parameter types in each language that are compatible with the
Real and Real Array types, refer to Section 17, "Using Parameters."

Access to Ancestral Processes in MARC

3-14

If you initiate a task through the MARC RUN command and that task accesses its own
EXCEPTIONTASK task attribute, the system interprets EXCEPTIONTASK as a
reference to the MARC library, *SYSTEM/MARC/COMMANDER. The task can use
the EXCEPTIONTASK task attribute to query the values of the task attributes of the
MARC MCS. However, if the task attempts to modify the task attributes of the MARC
MCS, the task is terminated with a task attribute error. This error occurs because
MARC runs with the private process option of the OPTION task attribute set to TRUE.

For tasks initiated through a MARC RUN command, the MYJOB task variable
and the PARTNER task attribute act as synonyms for the MYSELF task variable.
When such a task uses MYJOB or PARTNER to access any task attributes, the task
attributes accessed are those of the task itself. However, if the task changes the values
of the job summary-related task attributes, the changes affect thejob'summary of
the MARC session. The job summary-related task attributes are JOBSUMMARY,
JOBSUMMARYTITLE, and NOJOBSUMMARYIO .

. For WFL statements submitted through a MARC WFL command, the MYJOB task
variable refers to the WFL compiler process. The NAME of the WFL compiler
process in this case is MARC WFL, prefixed by the usercode of the session. The
MYSELF task variable refers to the task that is executing the compiled WFL
statements .. The NAME of this task is WFLCODE, prefixed by the usercode of
the session. MYSELF(JOBNUMBER) returns the MARC session number, but
:MYJOB(MIXNUMBER) returns the mix number of the WFL compiler process.

When statements submitted through the WFL command use the MYJOB construct to
alter job summary-related task attributes, these changes affect the job summary of the
MARC session. However, if the MYSELF variable is used to access these task attributes,
there is no effect on the job summary of the MARC session.

86000494-000

Tasking from Interactive Sources

Note: "When you use the JOBSUMMARY command to display the current
JOBSUMMARYvalue for the session, the output does not reflect
any JOBSUMMARY assignments made by tasks of the session.
Nevertheless, such assignments made by tasks do affect thejob
summary of the session unless overridden by a later JOBSUMMARY
command.

The MCSNAME task attribute of tasks initiated from MARC sessions typically returns a
value of SYSTEM/COMS, which might or might not be preceded by an asterisk (*).

Communicating with MARC Terminals

MARC automatically assigns the logical station number (LSN) to the STATION and
SOURCESTATION task attributes of processes initiated from MARC sessions. The one
exception is that, for WFL programs submitted by a START command, MARC does not
assign the LSN to the STATION task attribute.

Most programs initiated froin MARC can therefore declare and open a remote file
without having to explicitly assign the STATION task attribute or otherwise indicate
where the remote file is to be opened. However, when you use a START command to
submit a WFL job from MARC, the job and its descendants must take precautions before
attempting to open any remote files. The simplest precaution is for the job to assign its
'own SOURCESTATION value to its STATION value before initiating any tasks. For
example:

?BEGIN JOB;
MYSELF(STATION = MYSELF(SOURCESTATION»;
RUN OBJECT/X;
RUN OBJECT/Y;
?END JOB

An alternate precaution is for the job to file-equate the TITLE attribute of a program's
remote file to the job's SOURCENAME task attribute value. Like the STATION
assigmnent shown previously, this file equation causes the remote file to be opened at the
originating station. In the following example, REM is the internal name of a remote file
used by the program OBJECT/pROG.

?BEGIN JOB;
RUN OBJECT/PROG;

FILE REM(TITLE = #MYSELF(SOURCENAME»;
.?END JOB

The "Communicating with Interactive Processes" subsection pointed out that MARC
opens a task window to enable a process to communicate with a user through a remote
file. You can use the AUTOSWITCHTOMARC attribute to affect the handling of the
task window for users. If you set the AUTOSWITCHTOMARC task attribute to TRUE,
then users of the program are automatically transferred from the task window to the
originating screen when the process terminates. If AUTOSWITCHTOMARC is FALSE,
then the user must press the SPCFY key to return to the originating screen.

86000494-010 3-15

Tasking from Interactive Sources

oor
An operator display terminal (aDT) is any data corom terminal or workstation that is
connected to the system through one of the following types of data link processors: the
aDT-DLP or the UIP-DLP. The system provides aDTs with access to two operational
modes: system command mode and data comm mode. When an aDT is in data comm
mode, you can log on to CaMS and use various programs that run under CaMS, such as
MARC. When an aDT is in system command mode, you can enter system commands or
view automatic displays of system information.

The following subsections discuss tasking capabilities and programming considerations
for an aDT running in system command mode. For details about any of the system
command~, refer to the A Series System Commands Operations Reference Manual.

OOT Tasking Capabilities

The aDT provides you with the capability to submit WFL jobs and initiate dependent
or independent processes. The aDT also enables you to conveniently monitor all the
processes in the system mix.

Submitting WFL Jobs from an COT

3-16

You can submit WFL programs at an aDT by using any of the following methods:

• Typing in an entire WFL program, including a BEGIN JOB statement at the start,
and then transmitting it. (There is no need to include an END JaB statement.)

• Entering one or more WFL statements preceded either by a question mark (?) or by
the letters "CC". (The BEGIN JOB is not necessary in this case.)

• Entering one of a certain group ofWFL statements that do not require a BEGIN
JaB or any other prefix when used at the ODT. These include COMPILE, COPY,
PROCESS, RERUN, RUN, and START.

• Using the LD (Load Control Deck) system command, which submits a WFL program
that is stored on tape.

When you submit a WFL program through the LD command, the system executes
the program as a WFL job, which goes through the job queue mechanism. When you
submit WFL statements through the other methods listed previously, the system usually
executes the input as a WFL job. However, the system can execute some statements
directly, without creating a WFL job. Such statements do not pass through the job queue
mechanism, and therefore are not affected by job queue attributes. For a list of these
statements, refer to Section 4, "Tasking from Programming Languages."

For further details about submitting WFL programs from an aDT, refer to the A Series
Work Flow Language (WFL) Programming Reference Manual

86000494-010

Tasking from Interactive Sources

Initiating Processes from an OOT

You can use the ??RUN (Run Code File) primitive system command to initiate a program
as an independent process. The program can be written in any language except WFL.
The resulting process receives its own job file and job summary.

Note that if you enter RUN without the two question marks, the system treats this
as the WFL RUN statement. The system creates a WFL job to execute the RUN
statement and enters the job in a job queue. The job can be delayed by the queue mix
limit or affected by other job queue attributes. Further, the job affects the job queue
active count. Therefore, you might prefer to use ??RUN to initiate processes, such as
MCSs, that you do not wish to go through the job queue mechanism.

Initiating Compilations from an OOT

You can initiate compilations at an ODT by using the WFL COMPILE statement. The
system responds to this command by creating a WFL job that includes the COMPILE
statement and sending it through the job queue mechanism fo~ initiation.

Initiating Utilities from an OOT

Utilities can be initiated at the ODT by way of the ??RUN command or the WFL RUN
statement. There are other system commands that initiate specific utilities, such as
the TDm (Tape Directory) command, which initiates the FILEDATA utility to list the
directory of a tape, and the DA (Dump Analyzer) system command, which initiates the
DUMPANALYZER utility.

Two WFL statements that initiate specific utilities can be entered at the ODT. The LOG
statement initiates the LOGANAL YZER utility, and the PB statement initiates the
BACKUP utility. To use the WFL PB statement at the ODT, you must prefix it with a
question mark (?); otherwise, the system interprets it as the PB (print Backup) system
command, which does not initiate the BACKUP utility.

Monitoring and Controlling Processes at an oor
Of all the interactive sources for process initiation, the aDT provides the most complete
selection of commands for monitoring and controlling processes. The operator can use
these system commands to monitor or control all the processes on the system, including
processes initiated from any of the 'sources discussed in this section. These system
commands are listed under "Tasking Command Equivalents" in this section.

A unique feature of the aDT is Automatic Display mode. You initiate and control this
mode by using the ADM (Automatic Display Mode) system command. You can use this
feature to cause various types of information to be displayed at intervals, such as active
entries, waiting entries, completed entries, and process messages. This feature allows
you to monitor processes from beginning to end without having to enter commands
repeatedly.

By default, Automatic Display mode displays seven lines of A (Active Mix Entries)
system command output, three lines ofW (Waiting Mix Entries) system command

8600 0494-000 3-17

Tasking from Interactive Sources

output, two lines of S (Scheduled Mix Entries) system command output, five lines of C
(Completed Mix Entries) system command output, and devotes the remainder of the
display to MSG (Display Messages) system command output. By default, the system
updates the contents of the display every nine seconds. You can use the ADM command
to cause different system commands to be displayed or to change the time interval for
updates to the display.

Access to Task Attributes from an ODT

You can include task equations after a WFL task initiation statement submitted from the
ODT. Also, if you type in a complete WFL job at the ODT, you can include task attribute
assignments in the job attribute list. However, you cannot include task equations after
the ??RUN command.

When you initiate a process from the ODT, the process typically does not inherit any of
the task attributes that it would if you initiated the process from a MARC or CANDE
session. For example, the USERCODE, ACCESSCODE, CHARGE, and FAMILY values
of the process are usually null, unless explicitly assigned.

However, usercode attributes are inherited in the following two cases:

• If you submit a WFLjob that includes a USERCODE assignment in the job
attribute list, then the following task attributes of the WFL job inherit values
from the corresponding usercode attributes: ACCESSCODE, CHARGE, CLASS;
FAMILY, PRINTDEFAULTS, and PRIORITY. This inheritance can be overridden by
assignments to these attributes in the job attribute list.

• You can use the TERM (Terminal) system command to assign a terminal usercode
to an ODT. This usercode is inherited by WFL jobs submitted from the ODT, unless
overridden by a USERCODE assignment in the job attribute list. The job also
inherits values for the same set of task attributes listed in the previous item in this
list.

Note that programs initiated by a ??RUN command do not inherit the terminal usercode
or any other usercode attributes.

Special types of security status apply to nonusercoded processes and certain WFL
statements when they are entered at the ODT. These privileges are discussed in Section
5, "Establishing Process Identity ~and Privileges."

OOT Programming Considerations

When you design a program to be run from the ODT, you need to be aware of
ODT features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from an ODT

3-18

If you are designing a program to be initiated by the ??RUN primitive system command,
be aware that the program cannot receive any parameters.

8600 0494-000

Tasking from I nteractive Sources

If the program is to be initiated by a WFL RUN statement entered at an ODT, the
program can receive the four parameter types passed by WFL: Boolean, integer, real,
and string. The string parameter should be declared in the program as a real array (or
compatible parameter type) with an unspecified lower bound. For information about
real array parameters and compatible parameter types, refer to Section 17, "Using
Parameters. "

Access to Ancestral Processes in the ODT Environment

For a process initiated by the ??RUN primitive system command, the MYJOB task
variable and the EXCEPTIONTASK and PARTNER task attributes are all references to
the process itself.

For a process initiated by a WFL RUN statement at an ODT, MYJOB,
EXCEPTIONT ASK, and PARTNER are all references to the WFL job that was created
by the system to execute the RUN statement. The name of this WFLjob consists of the
first 17 characters of the WFL input you submitted.

Communicating with an ODT

Interactive programs that are designed for use at remote terminals might not run
successfully if initiated from the ODT. You must design the program somewhat
differently if it is to be initiated at an ODT. If the process opens a file with KIND =
REMOTE, it is discontinued with an "UNKNOWN FILE/STATION" error. The process
should open a file with KIND = ODT instead. A process can determine whether it was
initiated from an ODT or a remote terminal by interrogating the SOURCEKIND task
attribute.

A process can open a file either at a labeled ODT or at a scratch ODT. A labeled ODT is
one that has been assigned a label by the LABEL (Label ODT) system command. A
scratch ODT is one that has not been assigned such a label. .

To open a file at a labeled ODT, a process should first set the TITLE file attribute to
match the label assigned to the ODT. In addition, the NEWFILE file attribute value
should be FALSE or else unspecified. If NEWFILE is unspecified, the MYUSE file
attribute value should be IN or 10. When the process runs, the system opens the remote
file at any ODT with a matching label. If none of the ODTs has a matching label, the
process is suspended with a "NO FILE < file title> (SC)" RSVP message. The process
resumes execution when an operator uses the LABEL command to label an ODT with
the requested file title.

To open a file at a scratch ODrr: a process should set the NEWFILE file attribute to
TRUE, or leave NEWFILE unspecified and set MYUSE to OUT. The value of the TITLE
file attribute makes no difference in this case. If the process was initiated from an ODT,
and that ODT is a scratch ODT, the system opens the file at that ODT. Otherwise, the
system selects another scratch ODT and opens the file there.

To open a file at a particular ODT, regardless of whether that ODT is labeled or scratch,
the process can assign the UNITNO file attribute a value equal to the physical unit
number of the ODT. The system opens the file at the requested ODT even if the ODT

8600 0494-000 3-19

Tasking from Interactive Sources

is labeled and the label does not match the TITLE file attribute. However, note that
use of the UNITNO file attribute is restricted on systems running InfoGuard security
enhancement software at the S2 level; refer to the Security Admin"istration Guide for
details. . .

To open a file at the ODT where the process was initiated, regardless of whether that
ODT is labeled or scratch, the process should first read the physical unit number from
its own SOURCESTATION or ORGUNIT task attribute value. The process can then
assign the physical unit number to the UNITNO file attribute, as described previously.

When a process opens an ODT file, automatic display mode at the ODT is temporarily
suspended. However, system commands continue to be available. You can enter text
into the ODT file by preceding the text with a GS character. The GS character is also
known as the delta character and looks like an upward-pointing triangle. (Do not
confuse the GS character with the circumflex character, which resembles an inverted
letter v.) Refer to the documentation for your terminal to find out whether your terminal
supports the GS character, and which key it is mapped to.

You can indicate that there is no more input, and cause an end-of-file condition, by
entering the GS character, followed by ?END.

When the process closes the ODT file, the system removes the label from the ODT and
resumes Automatic Display mode. You can also resume Automatic Display mode while
the ODT file is still open by entering an ADM OK command at the ODT.

An example of a program that uses an ODT file is given in the ORGUNIT description in
the A Series Task Attributes Programming Reference Manual.

Tasking Command Equivalents

3-20

MARC and the ODT allow you to enter almost all of the same system commands for
process initiation, monitoring, and control. In addition, CANDE allows you to enter
process control commands that correspond fairly closely to system commands.

The system commands available in MARC for process control are spelled the same
as those available at an ODT, and have the same functionality, with the following
exceptions:

• Security

If the Communications Management System (CaMS) security category
COMMANDCAP ABLE is defined, then system commands can be submitted in
MARC only by users defined as COMMAND CAP ABLE. Further, some commands
are available only to users with SYSTEMUSER or privileged status. Some
other commands are filtered: in other· words, they are limited to monitoring and
controlling processes with the same usercode as the MARC session. For further
information about COMMANDCAP ABLE, SYSTEMUSER, and privileged status,
refer to the A Series Security Administration Guide.

• Spelling

The MSG (Display Messages) system command is spelled SMSG in MARC.

8600 0494-000

Tasking from Interactive Sources

CANDE process control commands differ from the corresponding system commands in
the following ways:

• Spelling

'J'he CANDE process control commands each begin with a single question mark (?).
In addition, the following spelling differences exist:

?JA corresponds to the J (Job and Task Structure) system command.

?CS corresponds to the mix number system command, which is formally known
as the COMPILE STATUS Gnformation for Compiler Task) command. Note
that the ?CS command in CANDE is not related to the CS (Change Supervisor)
system command.

?MXA corresponds to the 11X (Mix Entries) system command. ?11XA can be
abbreviated as ?11X or ?M.

• Implicit mix numbers

For commands that apply to a dependent process initiated directly from the CANDE
session, you can omit the mix number from the command. For example, instead of
entering ?1234.Y, you can enter simply ?Y.

• Security

In general, the CANDE process control commands can monitor or control only
processes running with the same usercode as the CANDE session. If you attempt
to apply a CANDE process control command to a process running with a different
usercode, CANDE displays the message "INVALID NUMBER". However, CANDE
makes one exception to this restriction. If you initiate a process in a CANDE
session, and that process later changes its own usercode, CANDE still enables you to
apply process control commands to that process.

• Mix display options

The CANDE mix display commands (?C, ? JA, ?LmS, and ?MXA) do not provide
the following options of the equivalent system commands: ALL, IN, MCSNAME,
QUEUE, and USER. However, the ALL option is implicitly set for all CANDE mix
display commands. Furthermore, CANDE mix display commands do offer one
feature'that the corresponding system commands do not: the ability to specify a
logical station number (LSN), which limits the display to processes originating from
the specified station. '

Table 3-1 shows the equivalent commands in these three interfaces and briefly
states the function of each command. In Table 3-1, the abbreviations (f), (pu), and
(su) are used in the MARC colwnn to indicate commands that are filtered or that
require SYSTEMUSER status or privileged status. For complete descriptions of these
commands, refer to the A Series System Commands Operations Reference Manual, the
A Series Menu-Assisted Resource Control (MARC) Operations Guide, and the A Series
CANDE Operations Reference Manual. For a general introduction to process monitoring
and control from an ODT, refer to the A Series System Operations Guide.

8600 0494-000 3-21

Tasking from Interactive Sources

Table 3-1. Interactive Tasking Functions

Functional Area oor MARC CANOE Specific Function

Initiating LD LD (su & pu) None Initiate a WFL job from
Processes tape.

??RUN None None Initiate an object code file
as an independent
process.

RUN RUN RUN, Initiate an object code file
UTILITY as a dependent process.

<WFL WFL WFL Submit WFL statements.
statements>

START START START Submit a WFL program
stored in a file.

Managing DS DS (f) ?<mixno> Discontinue a queued WFL
Queued WFL DS job.
Jobs

FS FS (su) None Force initiation of a queued
WFLjob.

MOVE MOVE (su) None Change order of queued
WFLjobs.

PF PF (su) None Display FETCH message
associated with a WFL job.

PQ PQ (su) None Discontinue all the WFL
jobs in a queue.

PR PR (su) None Change the priority of a
queued WFL job.

SQ SQ (f) ?SQ Display the WFL jobs in a
queue.

STARTTIME STARTTIME ?<mixno> Assign a start time to a
(f) STARTTIME queued WFL job.

V V(f) ?<mixno> V Display information about
a queued WFL job.

Legend continued
~, f Filtered if not SVSTEMUSER

pu Privileged status required
su SVSTEMUSER status required

. mixno Mix number

3-22 86000494-000

Tasking from Interactive Sources

Table 3-1. Interactive Tasking Functions (cont.)

Functional Area OOT MARC CANOE

Monitoring the ADM None None
Mix

C COMND C (f) ?C

DBS DBS (su) None

J J (f) ?JA

LlBS lIBS (f) ?LlBS

MSG SMSG (f) ?MSG

MX MX (f) ?MXA

S S (su) ?S

W W(f) ?W

Displaying Y Y(f) ?y
Process Status

<mixno>t <mixno> ?<mixno> or
?CS

OT OT (f) ?OT

Displaying CU CU (f) ?CU
Process
Resource Usage

TI TI(f) ?TI

t The <mixno> syntax is formally known as the COMPILE STATUS
(Information for Compiler Task) system command.

Legend
f Filtered if not SYSTEMUSER
pu Privileged status required
su SYSTEM USER status required
mixno Mix number

8600 0494-000

Specific Function

Periodically display system
mix and other items.

Display completed entries.

Display database stacks.

Display active mix entries,
grouped into process
families.

Display library processes.

Display process messages.

Display active, scheduled,
and waiting mix entries.

Display scheduled mix
entries.

Display waiting mix
entries.

Display cu rrent status of a
process.

Display the status of a
com pilation.

Display contents of a
selected word in the
process stack.

Display current memory
usage of a process.

Display accumulated
processor, VO, presence
bit, ready queue, and
elapsed times for a
process.

continued

3-23

Tasking from Interactive Sources

Table 3-1. Interactive Tasking Functions (cont.)

Functional Area OOT MARC CANOE Specific Function

Communicating HI HI (f) ?HI Cause process
with a Process EXCEPTION EVENT and

optionally assign a
TASKVALUE.

AX AX (f) ?AX Pass a stri ng of text to a
process.

18 18 (su) None Display instruction block
associated with a WFL job.

PF PF (su) None Print a FETCH message
associated with a WFL job.

Modifying an PR PR (su) None Change the priority of a
Active rrocess process.

ST ST (f) ?ST Suspend execution of a
process.

DS DS (f) ?DS Abnormally terminate
execution of a process.

Responding to AX AX (f) ?AX Pass a string of text to a
Suspended process.
Processes

DS DS (f) ?DS Discontinue a process.

j FA FA (f) ?FA Modify file attributes used
by a process.

FM FM (su) None Change the printer form
used by a process.

FR FR (f) ?FR Specify that a ta pe. reel is
the last of a multireel set.

IL IL (su) None Change the physical unit
used for an input file.

NF NF (f) ?NF Return an open error to a
process opening a file that
is not an optional file.

Legend continued
f Filtered if not SYSTEMUSER
pu Privileged status required
su SYSTEM USER status required
mixno Mix number

3-24 86000494-000

Tasking from Interactive Sources

Table 3-1. Interactive Tasking Functions (cont.)

Functional Area OOT MARC CANOE Specific Function

Responding to NOTOK NOTOK (f) ?NOTOK Prevent the process from
Suspended attempting a given action,
Processes but do not discontinue the
(cont.) process.

OF OF (f) ?OF Indicate an optional file is
not present.

OK OK (f)' ?OK Cause a suspended
process to attempt to
resume processing.

OU OU (su) None Change the physical unit
used for an output file.

RM RM (f) ?RM Remove a file specified in
a DUP LIBRARY message.

UL UL (su) None Assign an unlabeled tape
file to a particular process.

Saving and BR BR (su) None Display checkpoint
Restarting eligibility or initiate a
Processes checkpoint.

OK OK (f) ?OK Allow automatic resta rt of
a process.

OS DS (f) ?OS Deny automatic restart of a
process.

RERUN WFL RERUN WFL RERUN Initiate manual restart of a
process.

Legend
f Filtered if not SYSTEM USER
pu Privileged status required
su SYSTEM USER status required
mixno Mix number

86000494-000 3-25

Tasking from Interactive Sources

Communicating with an Operator
You can design a process to display information to an operator or accept information
from an operator. You can accomplish this communication through any of the following
methods:

• By accepting parameters from the operator in the statement that initiates the
process. This topic is discussed earlier in this section under "Receiving Parameters
from CANDE," "Receiving Parameters from MARC," and "Receiving Parameters
from an ODT."

• By performing read and write operations on a remote file or aDT file. This topic is
discussed in the following subsections of this section: "Communicating with CANDE
Terminals," "Communicating with MARC Terminals," and "Communicating with an
ODT."

• By using certain statements and task attributes that the system provides for
operator communications. These methods are discussed in the following subsections.

Displaying I nformation to Operators

3-26

A process can display information to operators using any of the following features:
DISPLAY statements, instruction blocks, and fetch specifications.

DISPLAY statements are the most commonly used of these methods. The DISPLAY
statement is implemented in ALGOL, COBOL74, and WFL. This feature is also available
as the Display procedure in Pascal. The following is a WFL example of this statement:

DISPLAY "INCORPORATING NEW DATA - MAY TAKE AWHILEII;

The output from a DISPLAY statement is referred to as a DISPLAY message. The
DISPLAY message appears as one of the entries in the response to the MSG (Display
Messages) system command. If the process is initiated from a CANDE or MARC session,
the DISPLAY message is automatically displayed at the session. The programmer can
use the DISPLAYONL YTOMCS task attribute to limit the display of the message to the
originating session. If this task attribute is TRUE, then the DISPLAY message does not
appear at the ODT.

You can use instruction blocks to store information that an operator can display at any
time. By contrast, DISPLAY messages are only temporarily visible to the operator,
because the MSG command displays only the most recent system messages. Instruction
blocks are created using the INSTRUCTION statement, which is available only in WFL.
The following is an example of this statement.

INSTRUCTION 3 TESTTAPE IS IN TAPE RACK 3.;

An operator can use the m (Instruction Block) system command to display instruction
blocks for a WFL job. For example, a command of the form 7645IB displays the most '

8600 0494-000

Tasking from Interactive Sources

recent instruction block for the WFL job with mix number 7645. A command of the form
7645IB 3 displays instruction block 3 for that WFL job.

The dis~dvantage of instruction blocks is that nothing prompts the operator to use the
IB command. The operator has to know in advance that instruction blocks exist for a
particular WFL job. If you want to be sure that an operator sees a message, you can use
the FETCH task attribute. This task attribute can be used only in WFL jobs, and only in
the job attribute list at the start of the job. You can assign any arbitrary string of text to
this attribute. The following is an example of a FETCH assignment:

FETCH = IITHIS JOB'NEEDS THREE TAPE DRIVES";

If the operating system option NOFETCH is not set, then when a WFL job containing
a FETCH assignment reaches the head of a job queue, the system suspends the job
rather than initiating it. The job appears in the W (Waiting Mix Entries) system
command display with an RSVP message of REQUIRES FETCH. The operator can use
the PF (Print Fetch) system command to display the FETCH specification, and the OK
(Reactivate) system command to cause the job to be initiated.

If NOFETCH is set, then the system does not suspendjobs with FETCH specifications.
However, the PF system command can still be used to display FETCH specifications.

If you enter a PF command for a process that has no FETCH specification, the system
displays the message "NO FETCH STATEMENT".

Accepting Information from Operators

A process can be passed information by an operator using either the HI (Cause
EXCEPTIONEVENT) or the AX (Accept) system command.

EXCEPTIONEVENT is an event-valued task attribute, meaning that it has either
of two states: HAPPENED or NOT HAPPENED. The HI command causes the
EXCEPTIONEVENT, meaning that the value is changed to HAPPENED. This action
has no effect on process execution unless the program is specifically designed to monitor
the status of the EXCEPTIONEVENT. Only programs written in WFL, ALGOL, or
COBOL74 have access to this attribute.

A program can monitor the EXCEPTIONEVENT in any of the following ways:

• To suspend execution until the EXCEPTIONEVENT is caused, the process can use a
simple wait statement such as WAlT(MYSELF.EXCEPTIONEVENT) in ALGOL or
WAlT; in WFL.

• To suspend execution until either the EXCEPTIONEVENT or some other
event occurs, the process can use a complex wait statement that lists the
EXCEPTIONEVENT as one of several events.

• To continue doing other work until the EXCEPTIONEVENT is caused, the process
can attach an interrupt to the EXCEPTIONEVENT.

In addition to causing the EXCEPTIONEVENT, the HI command can also pass an
assignment to the T ASKV ALUE task attribute of the process. For example, the

8600 0494-0'00 3-27

Tasking from Interactive Sources

cominand 3874 HI 14 causes the EXCEPTIONEVENT of the process with mix number
3874 and assigns a T ASKV ALUE of 14. To design a process to use this type of input,
you must first use a wait statement or interrupt to monitor the EXCEPTIONEVENT.
Whenever the EXCEPTIONEVENT occurs, the process can read its own TASKV ALUE
and take appropriate action.

Because the programmer controls the wayan application responds to a HI command, the
operator has no direct way of discovering whether a HI command is needed or what
effect it has. Another feature is available that allows the process itself to prompt the
operator for certain types of input. This feature is the ACCEPT statement.

The ACCEPT statement displays a string of text to the operator and suspends execution
of the process. The process appears in the W (Waiting Mix Entries) system command
display, where it can attract the attention of an operator. Execution resumes when the
operator uses an AX (Accept) system command to pass another string of text to the
process.

In some situations, you might find it more convenient for a process to continue executing
until AX input is available from the operator. This goal can be achieved in any of the
following ways:

• If the operator is familiar with the program, and knows that an AX command is
required later, he or she can enter the AX. command without waiting for the process
to become suspended. The system saves the text that was input by the operator.
When the process executes an ACCEPT statement, the process retrieves this saved
text and immediately continues executing.

• By using a conditional ACCEPT statement. This form of ACCEPT checks for
AX text previously submitted by the operator. The conditional ACCEPT returns
a Boolean value indicating whether such text was found. The process continues
executing normally, regardless of whether an AX. text was available.

• By using the ACCEPTEVENT task attribute. The system causes the
ACCEPTEVENT of a process whenever the operator enters an AX command for
that proces·s. A process can monitor the ACCEPTEVENT using wait statements or
interrupts, similar to those used for monitoring the EXCEPTIONEVENT. Whenever
the ACCEPTEVENT is caused, the process can execute an ACCEPT statement to
capture the AX input.

3-28 86000494-000

Section 4·
Tasking from Programming Languages

The A Series implementations of several programming languages include Unisys
extensions for process initiation and control. You can use these features to

• Initiate related suites of programs, so there is no need for an operator to initiate
them individually

• Divide an application into two or more cooperating, parallel processes for faster
execution

The languages with the most advanced process initiation and control capabilities are
WFL, ALGOL, and COBOL74. Of these, WFL is the simplest to use, and also has the
advantage of passing through the job queue mechanism and offering automatic job
restart after a halt/load. On the other hand, ALGOL and COBOL74offer sophisticated
features such as user-declared events, interrupts, port files, and a large variety of
parameter types. Each of these languages provides access to task attributes.

This section describes the tasking capabilities ofWFL, ALGOL, and COBOL74 in
some detail and provides brief examples of tasking programs written in each of these
languages. Additionally, this section includes a brief overview of the tasking capabilities
of other languages supported by A Series systems.

Work Flow Language (WFL)
Work Flow Language (WFL) is a programming language that is designed specifically
for use in task initiation and control. WFL is a block-structured language with syntax
similar to ALGOL, althoughWFL is simpler and easier to learn.

The following subsections explain how WFL jobs are submitted and how they can be
used to initiate other processes.

For further information about WFL, refer to the A Series Work Flow Language (WFL)
Programming Reference Manual.

Submitting WFL Input

WFL statements can be stored in disk or tape files or in arrays in programs written
in other languages. You can also enter and transmit WFL statements at a terminal.
Regardless of how WFL statements are stored or submitted, a group of one or more
WFL statements is referred to as WFL input.

WFL input must be submitted with special-purpose statements such as START and ZIP.
You cannot use general-purpose initiation statements such as CALL, PROCESS, and
RUN to initiate a WFL job.

86000494-010 4-1

Tasking from Programming Languages

4-:-2

The system can ~ompile WFL input and execute it as ajob or a task, or it can skip the
compilation and simply interpret the WFL input. The statement you use to submit the
WFL input and the statements contained in the WFL input together determine how the
system executes that input.

Table 4-1 summarizes the factors that determine how the system executes WFLinput.
The various sources that can submit WFL input are listed at the left. The headings of
the two right hand columns give information about the contents of the WFL input. The
following are the meanings of these headings:

• The Single Interpretive Statement column indicates WFL input consisting of a single
statement that is one of the following statements: ALTER, CHANGE, PRINT,
REMOVE, RERUN, SECURITY, or START. The WFL input can also iriclude a
FAMILY job attribute assignment, but cannot include any other job attributes. For
example, the following input is treated as a single interpretive statement:

FAMILY DISK = SYSPK ONLY;CHANGE (JASMITH)ORDS TO (JASMITH)OLDORDS;

• The Other Statements column indicates WFL input that consists of either more than
one statement or a single statement that is not one of the interpretive statements.
A WFL input also falls into this category if it includes assignments to job attributes
other than the FAMILY attribute. For example, the following input would fall into
this category:

JOBSUMMARY = SUPPRESSED;CHANGE (JASMITH)ORDS TO (JASMITH)OLDORDS;

86000494-010

Tasking from Programming Languages

Table 4-l. WFL Execution Modes

Single
Interpretive Other

Sources for Submitting WFL Input Statement Statements

CALL SYSTEM WFL (COBOL74) Interpreted Job

CALL SYSTEM WITH ZIP (COBOL(68»

With Array: Interpreted Job

With File: Job Job

. CONTROLCARD function (OCALGOL)

With [38:01] = 1 and Interpreted Task
[07:08] = 4 (Array Input):

otherwise: Interpreted Job

LC (Load Control) System Command Job Job

START Statement (CANOE, MARC, or WFL) Job Job

WFL Command (CANOE or MARC) Interpreted Task

WFL Statements Entered at the OOT Interpreted Job
(except PRINT,
which is
executed as a
job)

ZIP Statement (ALGOL, FORTRAN, or RPG)

With Array: Interpreted Job

With File: Job Job

86000494-010 4-2 A

Tasking from Programming Languages

4-28

If the system executes the WFL input as a job, it first calls an independent runner called
CONTROL CARD to compile the job and create ajob file. CONTROLCARDinvokes the
WFL compiler, which is a procedure exported by the system library WFLSUPPORT.
CONTROL CARD runs in a special high-priority category that prevents it from being
scheduled or suspended by the system if there is a shortage of available memory. The job
file that CONTROLCARD creates contains more information than a typical job file, as
discussed in Section 2, "Unders~anding Interprocess Relationships."

The system then inserts the job file in ajob queue. (For a description of the job queue
mechanism, refer to "Selecting the Queue for a Job" later in this section.) Later, the
system selects the job file from the job queue and initiates it as ajob (an independent
process). When thejob terminates, the system usually prints thejob summary and any
backup files associated with the job and its tasks. The system then deletes the job file.

If the system executes the WFL input as a task, the system initiates CONTROLCARD
to compile the input and create an object co~e file. The system then initiates the WFL
input as a task (a dependent process); the task does not pass through the job queue
mechanism. When the task terminates, the system removes the object code file.

By default, no job summary or backup files are associated with the WFL task. For
example, if the WFL(task was initiated from a CANDE session, then backup files
produced by the WFL task or its descendants are associated with the CANDE session
and queued for printing only when the session is ended.

If the system handles the WFL input interpretively, then CONTROLCARD executes
the WFL statement without creating a WFL job or a WFL task. In this case,
CONTROL CARD neither creates ajob file or an object code file, nor does it use the job
queue mechanism.

86000494-010

Tasking from Programming Languages

Selecting the Queue for a Job

A job queue is a list ofWFLjobs that are awaiting initiation. Job queues are defined by
the system administrator and managed by the operating system.

The purpose of job queue definitions is to allow the system administrator to set up some
general parameters affecting the flow of WFL jobs on the system. Because a WFL job is
typically an agent for initiating batch programs, the job queue system by implication can
be used to regulate the initiation of batch programs in general.

Before defining the job queues, the system administrator usually analyzes the batch
programs run on the system in terms of their patterns of resource usage and their
relative urgency. The administrator then defines a separate job queue for each set
of batch programs that show similar characteristics. For example, if there is a payroll
application that has to finish processing before a precise deadline, the administrator
might assign the application to a high-priority job queue. The administrator uses an MQ
(Make or Modify Queue) system command to define the job queue.

For a complete explanation of job queues and usingjob queues in system administration,
refer to the A Series System Administration Guide. For information about using system
commands to monitor and interact with jobs in queues, refer to theA Series System
Operations Guide. The following subsections describe the features of job queues that
are of most direct interest to a programmer.

86000494-010 4-3

Tasking from Programming Languages

Deciding on the Queue-for a Job

4-4

Depending on the policies that are ~ effect at your site, you might be required to ask
your system administrator which job queue to submit a particular WFL job to. However,
if the system administrator allows you to decide on the job queue, then you need to
examine the job queue definitions to determine which queue is most suitable to your job.

The system command for displayingjob queue definitions is QF (Queue Factors). The
following is an example of a QF command and the response:

QF 4

QUEUE 4:
MIXLIMIT = 2
DEFAULTS:

PRIORITY = 50
PROCESSTIME = 100

LIMITS:
PRIORITY = 60
PROCESSTIME = 200

In this example, 4 is the job queue number. This number uniquely identifies a job queue.
If the QF cOrnnland does not specify a number, the output displays the definitions of all
job queues on the system.

The MIXLIMIT value specifies, roughly, the maximum number of jobs and descendant
tasks initiated through this job queue that can be running concurrently. If the actual
number of jobs and tasks originating from this job queue equals or exceeds the
MIXLIMIT value, the system temporarily ceases initiating jobs from this job queue.
After one or more of the jobs and tasks in this job queue terminates, the system resumes
initiatingjobs from this job queue.

The DEFAULTS and LIMITS portions of the job queue definition specify default values
and maximum values for various task attributes that restrict the resource usage of a
process.

The job queue defaults are inherited by the corresponding task attributes of a WFL
job. However, the job can override this inheritance with assignments in the job header;
that is, assignments that follow the BEGIN JOB construct but precede any of the
declarations and statements in the job. Consider the following example:

?BEGIN JOB;
CLASS = 4;
PRIORITY = 55;
TASK T;
MYSELF(MAXPROCTIME = 150);
RUN OBJECT/PROG;

?END JOB

86000494-010

Tasking from Programming Languages

Assume that this job is submitted through the job queue that was previously shown
in the QF command example. Queue 4 has default values for both PRIORITY and
PROCESSTIME (which corresponds to the MAXPROCTIME task attribute). The
PRIORITY assignment·in the job is part of the job header, and therefore overrides the
PRIORITY queue default. However, the MAXPROCTIME assignment in the job is not
part of the job header. Therefore, the job does inherit the default MAXPROCTIME of
100 at initiation. The statement that assigns MAXPROCTIME a value of 150 has no
affect, because the system does not allow a process to increase its MAXPROCTIME
value after initiation.

N ow consider the following job:

?BEGIN JOB;
CLASS = 4;
PRIORITY = 75;
MAXPROCTIME = 300;
TASK T;

. RUN OBJECT /PROG;
?END JOB

The system would never accept this job into queue 4, because the job header assigns
values to PRIORITY and MAXPROCTIME that are both higher than the queue limits
for these attributes. Since the CLASS attribute explicitly requests queue 4, the system
rejects the job and displays a "Q-DS" message. (The CLASS attribute is explained
under "Requesting the Queue for a Job," later in this section.)

The following are the job queue attributes that establish resource usage limits, and the
task attributes that correspond to the job queue attributes:

Job Queue Attribute

CARDS

DISKLIMIT

ELAPSEDLIMIT

lorlME

LINES

PROCESSTIME

PRIORITY

SAVEMEMORYLIMIT

8600 0494-000

Task Attribute

MAXCARDS

DISKLIMIT

ELAPSEDLIMIT

MAXIOTIME

MAXLINES

MAXPROCTIME

PRIORITY

SAVEMEMORYLIMIT

Effect

Limits the number of cards the job and its
tasks can punch

Limits the space the job and its tasks can
allocate for disk files

Limits the amount of time a job can be in
use

Limits the amount of processor time that
can be devoted to initiating VO operations
for the job and its tasks

Limits the number of lines the job and its
tasks can print

Limits the amount of processor time that a
. process can use for computations

Specifies the relative urgency of jobs and
tasks as compared to other processes in
the mix

Limits the amount of save memory the job
and its tasks can use

continued

4-5

Tasking from Programming Languages

continued

Job Queue Attribute

TEMPFILELIMIT

WAITLIMIT

Task Attribute

TEMPFILELIMIT

WAITLIMIT

Effect

Limits the space the job and its tasks can
allocate for temporary disk files

Limits the amount of time the job and its
tasks can remain waiting after executing a
WAIT statement

If the actual resource usage of the job or its tasks exceeds one or more of the resource
usage limits, the system discontinues the process that exceeded the limit. The point of
this behavior is to encourage you to reexamine the job queue definitions and submit the
job through the appropriate job queue.

In summary, you can determine an appropriate job queue for a job by estimating the
resource usage requirements of the job and choosing ajob queue whose resource usage
limits are adequate1y high. There are, however, some additional restrictions that you
need to be aware of:

• The system administrator can assign two attributes to your usercode that
specify which job queues you are allowed to use. These attributes are
CLASSLIST and ANYOTHERCLASSOK If ANYOTHERCLASSOK is set, then
CLASSLIST is interpreted as a list of the job queues you are forbidden to use. If
ANYOTHERCLASSOK is not set, then CLASSLIST is interpreted as a list of all the
job queues you are allowed to use. You should ask the system administrator whether
these attributes are defined for your usercode.

• The system administrator can use the UQ (Unit Queue) system command to specify
that all WFL jobs submitted from a particular device be routed into a particular job
queue. ODTs and card readers are examples of input devices that can be specified in
a UQ command. The inquiry form of the UQ command can be used to display the
unit queue assignments in effect on the system.

• The job queue definition can include a FAMILY attribute that corresponds to the
FAMILY task attribute. However, the FAMILY queue attribute is not exactly a
default or a limit. Rather, it excludes any job from the job queue if the job header
includes a FAMILY assignment different from the FAMILY queue attribute. You
can use the QF command to determine whether a job queue has a FAMILY queue
attribute.

Requesting the Queue for a Job

4-6

If you have decided that a specific job queue is most appropriate for your job, then you
can request the job queue through a CLASS assignment in the job header. For example,
the following job requests queue 10:

?BEGIN JOB;
CLASS = 10;

RUN OBJECT/PROG;
?END JOB

8600 0494-000

Tasking from Programming Languages

If the job does not include a CLASS assignment, it can inherit a value from the CLASS
usercode attribute. An inherited CLASS value has the same effect as an assigned
CLASS value.

The system evaluates the eligibility of a job for a requested job queue on the basis of the
factors discussed previously: queue resource usage limits, usercode class limits, unit
queue assignments, and the FAMILY value. If the job qualifies for the requested queue,
the system places the job inthe queue. If the job does not qualify for the requested
queue, the system rejects the job and displays the message "Q-DS."

If the job has no assigned or inherited CLASS value, the system attempts to find
an appropriate job queue to place the job in. The method the system uses for
making this selection depends on whether the operating system compile-time option
QFACTMATCHING is set.

If the job has no CLASS assignment and QF ACTMATCHING is set, then the system
examines the various job queues to determine their eligibility for receiving the job. The
system selects the first job queue that meets the following criteria:

• Any resource limits specified for the queue are greater than or equal to the
corresponding resource limits in the WFL job header. For example, if the queue has
a PRIORITY limit of 50, the job must either have no PRIORITY assignment in the
job header or a PRIORITY assignment less than 51.

• The job queue must be one that is legal for ajob with this usercode.

If the job has no CLASS assignment and QF ACTMATCHING is reset, then the system
selects the default job queue. The system administrator defines the default job queue
using the DQ (Default Queue) system command. If no default queue has been defined,
the system checks all the job queues, just as it would if QF ACTMATCHING were set.

Whether QF ACTMATCHING is set or not, the system performs an additional check. If
the job queue selected by the system has a FAMILY attribute and the job also has a
FAMILY assignment in the job header, the system checks to see whether they match.
If they do not specify identical family values, the system rejects the job and displays a
"Q-DS" message.

Specifying a Start Time

You can use the ST ARTTIME task attribute to specify the earliest time and date that
a particular job can be selected from ajob queue. This task attribute can be assigned
only to WFL jobs. It can be assigned in the task attribute list of the WFL job or in
the statement that initiates the WFL job. You can also use the STARTTIME (Start
Time) system command or the CANDE ?STARTTIME command to assign this attribute
to ajob in ajob queue. However, any changes made using these commands are not
maintained across a halt/load.

8600 0494-000 4-7

Tasking from Programming Languages

When you initiate ajob with a STARTTIME specification, the job is compiled
immediately and placed in an appropriate job queue. The job remains in the job queue at
least until the date and time specified by the ST ARTTIME. You can use the SQ (Show
Queue) system command to display the ST ARTTIME of jobs in a queue. The following is
an example of the output for the command SQ 2:

QUEUE 2
6643 01 TEST/WFL (#0001)

QUEUED: 12/19/89 AT 15:41:31 STARTTIME = 18:00:00 ON 12/20/89

The STARTTIME specification provides a convenient means of scheduling ajob for
a time when the system load is lighter, such as in the evening or during a weekend.
ST ARTTIME is also a convenient means of scheduling jobs that must run at regular
intervals, such as every morning. The following example job, which is stored in the file
(JASMITH)WFL/RUN, restarts itself on a daily basis:

?BEGIN JOB WFL/RUN;
RUN OBJECT/PROG;
START (JASMITH)WFL/RUN;STARTTIME = 10:00 ON +1

?END JOB

Structuring the WFL Job

A complete WFL job is considered a block, and each subroutine declared in the job is also
a block. The WFL job can enter or initiate subroutines. WFL automatically protects
against critical block exits by performing an implicit wait at the end of the block that
contains a task initiation statement. Control does not exit this block until all tasks
initiated in that block have terminated.

WFL includes CASE, DO UNTIL, GO, IF, and WHILE DO statements that you can
use to direct the flow of control in ajob. By using these statements together with
task attribute interrogations, a WFL job can provide conditional control over tasks.
For example, the job can initiate the SYSTEM/P ATCH utility as a task. When
SYSTEM/P ATCH terminates, the job can interrogate the task attributes of the
SYSTEM/P ATCH task. If the attribute values indicate that SYSTEM/P ATCH ran
without errors, the job can compile the merged source program. If the compilation is
free of errors, the job can run SYSTEM/XREFANALYZER to produce an analysis of
cross-references in the program.

Initiating Dependent Processes from WFL

4-8

In WFL, the RUN statement can be used to initiate an object code file as a synchronous
dependent process. The TYPE task attribute of the resulting process shows a value of

. CALL. The initiated program can be written in any language except WFL.

The PROCESS keyword is used as a modifier in front of other initiation statements to
cause the process to run asynchronously. Thus, a PROCESS RUN statement iIiitiates an
asynchronous task. The TYPE task attribute of the task has a value of PROCESS.

8600 0494-000

Tasking from Programming Languages

WFL cannot initiate a program as an independent process. Also, a WFL job is never
considered to be a coroutine; that is, a WFL job and its offspring cannot use CONTINUE
statements to pass control back and forth.

There are some noteworthy differences between task initiation in WFL and task
initiation in ALGOL or COBOL74. In the latter two languages, RUN initiates an
independent process and PROCESS initiates an asynchronous dependent process.
Another difference is that WFL does not use external procedure declarations. Also,
there is no need to include a NAME task attribute assignment in WFL; the name of the
object code file to be executed is specified in the RUN statement.

WFL jobs can also initiate internal procedures. An internal procedure in WFL
is referred to as a subroutine. If the PROCESS keyword precedes a subroutine
invocation statement, the system initiates the subroutine as an internal, asynchronous,
fully dependent process. (If you do not use the PROCESS keyword, the subroutine
invocation statement enters, rather than initiates, the subroutine.)

Initiating Compilations from WFL

A WFL job can initiate compilations by using the COMPILE statement. The COMPILE
statement initiates a compiler and specifies the object code file to be compiled. The
COMPILE statement can also include an object code file disposition, which specifies
whether the object code file is to be executed once it is compiled, and whether the object
code file is to be saved. The COMPILE statement can also be used to invoke the Binder.
BIND is a synonym for the COMPILE statement.

Initiating Utilities from WFL

In addition to the RUN statement, WFL provides various special-purpose initiation
statements. These statements include ADD, COPY, LOG, and PB. The COPY and ADD
statements each initiate the visible independent runner LIBRARY/MAINTENANCE
to copy a file. The LOG.statement initiates the LOGANALYZER utility, and the PB
statement initiates the BACKUP utility.

Initiating Interactive Processes from WFL

A WFL job can initiate an interactive process, but you might need to include a STATION
task attribute assignment for the interactive process to run properly. The STATION
task attribute specifies the logical station number (LSN) of the station where any remote
files used by the process are to be opened. WFLjobs initiated through a CANDE or
MARC START command do not inherit the LSN associated with the remote terminal
where they are initiated. You can remedy this problem by including the following
statement at the start of the job:

MYJOB (STATION = MYSELF(SOURCESTATION));

This statement assigns the LSN of the station that initiated the job to the STATION
attribute of the job. This STATION value is inherited by all tasks initiated by the job.

86000494--000 4--9

Tasking from Programming Languages

(Note that this assignment is lost across a haltlload. For details, refer to Section 11,
"Restarting Jobs and Tasks.")

Submitting Other WFL Jobs

A WFL job can include a START statement to initiate another WFL job. The START
statement can initiate only WFL programs that are stored on disk files. This statement
can include any of the parameter types that WFL recognizes. The START statement can
also include an assignment to the STARTTIME task attribute, which specifies when the
WFL job should be initiated.

Access to Task Attributes in WFL

4-10

A WFL job can include a job attribute list, which specifies task attributes to be applied
to the job before initiation. Certain task attributes, if included in this list, can help
determine the job queue in which the job is placed. The CLASS task attribute has
the most direct effect on job queue selection; for more information about the CLASS
attribute, refer to "Selecting the Queue for a Job" later in this section.

A WFL job can specify initial values for the attributes of a task if you inClude a task
equation list in a task initiation statement. All task initiation statements in WFL
(including RUN, COPY, and COMPILE) allow the use of task equations.

A WFL job can also use task variables to interrogate or modify the task attributes of
a process. The task variable becomes associated with a task by being included in the
task initiation statement. Assignments to the task variable before task initiation have
the same effect as task equations. Ajob can monitor and control an asynchronous task
while it is executing by accessing its task variable. Mter a task terminates, the job can
interrogate the task variable to return task history information.

A WFL job can use the predeclared task variable MYSELF to access the job's own task
attributes. Ajob can also use the predeclared task variable MYJOB, which has the same
meaning as MYSELF unless it is referred to in an asynchronous subroutine. For an
asynchronous subroutine, MYJOB refers to the parent WFL job and MYSELF refers to
the subroutine's task attributes.

The COMPILE statement can specify task attributes that are stored in the object code
file created by the compilation. These task attribute values are used each time the object
code file is executed, unless the values are overridden by task equations at run time.
Also, a WFL job can use the MODIFY statement to asSign task attributes to an object
code file that already exists.

WFLjobs can directly access all task attributes exceptfor task-valued or event-valued
task attributes and the mSTORYREASON task attribute.

In general, the syntax for accessing task attributes in WFL is simpler than that used in
ALGOL. Mnemonic-valued task attributes return string values rather than integers.
Pointer-valued task attributes also return string values. Attributes that ~ord resource
usage, such as ACCUMPROCTIME, return values in units of seconds instead of 2.4
microseconds.

8600 0494-000

Tasking from Programming Languages

Using File Equations in WFL

Assigmnents to the FILECARDS task attribute are referred to as file equations. In
WFL jobs, FILECARDS can be abbreviated to FILE. Using this task attribute, the job
can modify the attributes of the logical files used by the task. The TITLE attribute can
be used to cause the task to use a different physical file than it otherwise would.

You can include a construct called a global file assignment in a WFL job to cause
an offspring to use a file declared in the WFL job. A global file assigmnent assigns
a particular file declared. by the WFL job to a particular internal name used by the
offspring. Whenever the offspring attempts to use the file with that internal name, the
system causes it to use the global file instead. This mechanism amounts to a hidden
call-by-reference parameter because the job and its offspring use the same logical file.

A unique feature of WFL is the ability to include data specifications in the WFL source
program. Whenever an offspring attempts to read from a card reader file, it reads
instead from a data specification, if one is available. You can also use data specifications
to replace other kinds of input files used by an offspring. To do this, you must include a
file equation in the statement that initiates the offspring. The file equation must assign
the input file a KIND file attribute value of READER. The offspring then reads lines
from the data specification as if they were lines of the input file; for this reason, data
specifications are also known as pseudo-reader files.

Responding to Error Conditions in WFL

Use the ON TASKFAULT statement to.specify actions to be taken ifa task terminates
abnormally or if a compilation is terminated for syntax errors. WFL can also interrogate
the values of the STATUS and HISTORYTYPE task attributes after a task terminates
to determine the type of termination and take appropriate action.

Communicating with Other Processes in WFL

WFL jobs can communicate with their tasks by using any of several methods. The
following list reviews each method of interprocess communication:

• Globally declared objects

A subroutine initiated with a PROCESS < subroutine> statement can access
objects declared globally to the subroutine in the WFL job.

• Parameters

The RUN statement can include Boolean, integer, real, or string parameters. By
default, these parameters are call-by-value parameters. However, you can specify
that a parameter is call-by-reference by including the word REFERENCE after the
parameter. A WFL job and an asynchronous task can communicate by interrogating
and modifying the value of a call-by-reference parameter.

8600 0494-000 4--11

Tasking from Programming Languages

• Events

A WFL job cannot declare events or interrupts and cannot access event-valued task
attributes directly. However, a WFL job can use the WAIT statement, which can
wait on many different types of implicitly declared events. For example, the simple
form of the WAIT statement waits on the job's exception event. Ajob can also use
WAIT statements to wait for a task to terminate or for one of the task attributes to
attain a specified value. A WFL job can also access the LOCKED task attribute.
LOCKED is a Boolean task attribute that acts like an event.

• Libraries

Libraries cannot be written in WFL, nor can WFL use libraries written in other
languages.

• Port files and disk files

WFL jobs cannot read from or write to files. A WFL job can create a single disk
file and specify the contents of that file by using the DECK statement. However,
the DECK statement, if used, must be the only statement in the job. Another
useful feature is the ability ofWFL to create a dummy file by simply declaring a file,
opening it, and closing it. Such files can be used as flags to other processes. For
example, a WFL job can perform a file-residence inquiry to determine whether a file
with a certain title exists.

For details about any of these interprocess communication methods, refer to Part IT of
this guide, "Interprocess Communication."

Restarting WFL Jobs

4-12

A WFL job automatically restarts if interrupted by a halt/load. WFL is the only language
with this automatic restart capability. WFL also plays an important role in the restarting
of checkpointed ALGOL or COBOL(68) processes. These processes must be offspring of
a WFL job in order to be checkpointed. Also, the WFL RERUN statement is the means
used to restart a checkpointed process. For further information, refer to Section 11,
"Restarting Jobs and Tasks."

8600 0494-000

Tasking from Programming Languages

WFL Example

The following example illustrates some WFL capabilities for task initiation and control:

?BEGIN JOB AUTOPB/HELP(STRING SOURCE, STRING PATCH);
JOBSUMMARY = SUPPRESSED;
DISPLAYONLYTOMCS = TRUE;
CLASS = 15;

TASK T;
STRING RUN1, HELPTITLE;
HELPTITLE := (PATCH & "/LEVEL1/HELPBOOK");
RUNl := ("SOURCE=" & SOURCE

& ",PATCH=" & PATCH
& ",OUT=" & PATCH & "/LEVELl/ED"
& ",HELP=" & HELPTITLE
& ",MESSAGEFILE=" & PATCH & "/LEVEL1/MESSAGES");

DISPLAY "RUNNING AUTOPB WITH II & RUN1;
RUN OBJECT/AUTOPB ON DOCMAST(RUN1) [T];

FILE TEACHUTILNAME=*SYSTEM/HELP/UTILITY ON DOCMAST;
IF T(TASKVALUE) NEQ 1

THEN BEGIN
DISPLAY "HELPBOOK NOT CREATED; PRINTING ERRORS FILE";
RUN *OBJECT/AUTOLP ON DOCMAST;

END;
?END JOB

TASKVALUE = 1;
FILE SOURCE = #PATCH/LEVEL1/MESSAGES;

The main point of this job is to run a program called AUTOPB. The AUTOPB program
accepts two input files, SOURCE and PATCH, and produces three output files, OUT,
HELP, and MESSAGEFILE.

The job accepts two string parameters that provide the titles of the SOURCE and
PATCH files. Using these, the job constructs an elaborate string parameter to pass to
AUTOPB. This string parameter defines the titles for all the input and output files.

AUTOPB sets its own TASKVALUE to 1 unless it finds errors in the input files.
The job inspects the TASKV ALUE after AUTOPB terminates and prints out the
MESSAGEFILE if there are errors.

ALGOL
ALGOL is a structured, high-level programming language with advanced computational
and I/O capabilities. ALGOL also provides the most complete process initiation and
control capabilities of any language available on A Series systems.

Closely related to ALGOL are several extended versions of the ALGOL language.
DCALGOL is an extended ALGOL that includes some system control and data comm
interfaces. DMALGOL includes special constructs for data management software.
BDMSALGOL contains extensions for accessing Data Management System II (DMSll)

8600 0494-000 4--13

Tasking from Programming Languages

databases. In the following discussion, the features described are available in each of
these languages, except where otherwise noted.

For further information about the ALGOL tasking features discussed in the following
subsections, refer to the A Series ALGOL Programming Reference Manual, Volume 1:
Basic Implementation.

Structuring an ALGOL Program

The 'following ALGOL structures are considered blocks:

• Any complete ALGOL program. A complete ALGOL program can be initiated but
cannot be entered.

• Any typed procedure; that is, any procedure designed to be invoked as a function
that returns a value. (For example, Boolean procedures or real procedures.) Typed
procedures can be entered but cannot be initiated. .

• Any untyped procedure; that is, any procedure that does not return a value.
Untyped procedures can be entered or initiated.

• A simple block, which is any group of declarations and statements that appears
between the words BEGIN and END and is not preceded by a procedure heading.
(An exception is the outer block of the program, which is not considered a simple
block.) Such a block cannot be entered or initiated. The block is executed when
control passes either from the previous statement in the program or from a GO TO
statement elsewhere in the program. (Note that a BEGIN ... END statement is not
treated as a block if it does not include any declarations. In this case, it is simply a
compound statement.)

When you initiate one of these ALGOL structures, the system creates a process stack.
When you enter one of these ALGOL structures, the system creates an activation
record. When a BEGIN ... END block that includes declarations is executed, the system
also creates an activation record.

An ALGOL program that initiates an asynchro~ous process should usually include a wait
statement to prevent the critical block from being exited while the offspring is in use.
An example of this wait statement is given in Section 2, "Understanding Interprocess
Relationships." .

ALGOL includes an abundance of flow-of-control statements, such as CASE, DO, FOR,
IF and WIllLE. By using these statements together with task attribute interrogations,
an ALGOL program can provide conditional control over tasks.

Initiating Processes from ALGOL

4-14

An ALGOL program can initiate any untyped procedure, including imported library
procedures, passed external procedures, and separate programs.

To initiate another object code file, an ALGOL program must declare an external
procedure and a task variable. The program must also assign the title of the object
code file to the NAME attribute of a task variable. The program can then initiate the

8600 0494-000

Tasking from Programming Languages

object code file with a process initiation statement that specifies the declared external
procedure and task variable that were previously prepared.

Three process initiation statements are available. The CALL statement initiates a
dependent, synchronous process. The PROCESS statement initiates a dependent,
asynchronous process. The RUN statement initiates an independent process.

You can implement coroutines in ALGOL through the use of CALL and CONTINUE
statements. The CALL statement creates an active coroutine and change~ the initiating
process into a continuable coroutine. Coroutines can pass control back and forth by
using CONTINUE statements.

Initiating Compilations from ALGOL

ALGOL does not provide any statement specifically for initiating compilations. However,
an ALGOL program can submit a WFL job that includes a COMPILE statement.
Alternatively, an ALGOL program can initiate a compiler like any other program, with
a CALL, PROCESS, or RUN statement. An example of this method is given under
"ALGOL Examples" later in this section.

Initiating Utilities from ALGOL

ALGOL does not provide any statements specifically for initiating utilities. However, the
CALL, PROCESS, and. RUN statements can initiate any utility and pass any parameters
that are required by that utility. An example of an ALGOL program that initiates the
LOGANALYZER utility is given under "ALGOL Examples" later in this section.

Initiating Interactive Processes from ALGOL

An ALGOL program initiated from a MARC or CANDE session inherits the STATION
task attribute of the session. The STATION attribute is in turn inherited by any
processes initiated by the ALGOL program. As a result, the processes initiated by the
ALGOL program can open a remote file at the originating terminal without having to
make any special remote file assignments. However, an ALGOL program. initiated
from a WFLjob or from an ODT might not inherit a STATION value. For further
information, refer to "Work Flow Language (WFL)" in this section and to the ODT
discussion in Section 3, "Tasking from Interactive Sources."

Submitting WFL Jobs from ALGOL

You can use the ZIP statement to submit a WFL job for execution. You can store the
WFL job source in a disk file or in an array in the ALGOL program itself. Note that
messages produced by the WFL job or its descendants will not be forwarded to the
CANDE or MARC session that originated the ALGOL program. However, you can use
the CANDE ?MSG command or the MARC SMSG command to display these messages.

8600 0494-000 4-15

Tasking from Programming Languages

Access to Task Attributes in ALGOL

An ALGOL program can declare task variables for use in accessing the task attributes
of offspring processes. Every process-initiation statement must specify a task variable,

. which thereafter is associated with the new process. An ALGOL program can
interrogate or assign task attribute values of the task variable before or after the task
variable is used in a process initiation statement. Assigrun,ents made to a task variable
before initiation are saved and applied to the process at initiation time.

An ALGOL program can use the predeclared task variables MYSELF and MYJOB to
access its own task attributes and those of its job.

An ALGOL program can interrogate and modify task attributes that store any of the
possible data types, such as Boolean, integer, and so on. The task attribute types
available in ALGOL include two types that are not available in WFL: event and task.

Communicating with Other Processes from ALGOL

ALGOL programs have full access to all of the interprocess communication methods
discussed in this guide, including globally declared objects, call-by-reference or
call-by-name parameters, events and interrupts, port files, and libraries. For details
about any of these interprocess communication methods, refer to Part IT of this guide,
·"Interprocess Communication."

Restarting ALGOL Processes

An ALGOL program can include a CHECKPOINT statement that creates a checkpoint
file. The checkpoint file stores information about the current state of a process. You can
use the checkpoint file after a haltlload to restart the process. For further information,
refer to Section 11, "Restarting Jobs and Tasks."

DCALGOL Features

4-16

In addition to the ALGOL features previously discussed, DCALGOL includes the
CONTROLCARD function, which you can use.instead of the ZIP statement to submit
WFL jobs for execution. The CONTROLCARD function has several capabilities that are
unavailable through ZIP. For example, the CONTROLCARD function can

• Specify whether the WFL job should be a dependent or independent process

• Compile the job for syntax checking only, without executing it

• Specify that any messages generated by the job be routed to an MCS for display in
the originating session

• Define the invalid character to be something other than a question mark (?)

• Submit ajob that is stored as a message in a DCALGOL queue

Additionally, the process that submits the CONTROLCARD function can determine
whether the WFL job compiled without syntax errors. If a WFL job submitted through

8600 0494-000

Tasking from Programming Languages

CONTROLCARD has syntax errors, the system assigns the value 1 to the· TASKV ALUE
of the process that submitted the job.

A privileged DCALGOL process can also duplicate the process initiation and control
capabilities that are available at an ODT. You can use the DCKEYIN statement to submit
system commands to the operating system. The GETSTATUS and SETSTATUS
functions directly invoke the operating system interfaces that are accessed by system
commands. For information about ODT process initiation and control capabilities, refer
to Section 3, "Tasking from Interactive Sources."

ALGOL Examples

The following sample program initiates a separate program called REPORTER.
The REPORTER program is initiated twice, both times as an asynchronous task,
and is passed a different parameter each time. The sample program then uses a
WAIT ANDRESET statement to prevent a critical block exit.

BEGIN
EBCDIC ARRAY DAILYTYPE[0:5] ,

WEEKL YTYPE [0: 6] ;
TASK T, T2;
PROCEDURE REPORTS (ACTUALARRAY);

EBCDIC ARRAY ACTUALARRAY[*];
EXTERNAL;

REPLACE T.NAME BY U(JASMITH)OBJECT/REPORTER ON DATAPK. II
;

REPLACE DAILYTYPE[0] BY uDAILY u;
·PROCESS REPORTS (DAILYTYPE) [T];

REPLACE T2.NAME BY U(JASMITH)OBJECT/REPORTER ON DATAPK. u;
REPLACE WEEKLYTYPE[0] BY uWEEKLY u;
PROCESS REPORTS (WEEKLYTYPE) [T2];

WHILE (T.STATUS GTR 0 OR T2.STATUS GTR 0) DO
WAITANDRESET (MYSELF.EXCEPTIONEVENT);

END.

8600 0494-000 4-17

Tasking from Programming Languages

4-18

The following is an example of initiating a compilation from an ALGOL program. The
sample program passes an array parameter and makes FILECARDS assignments to tell
the compiler what files to use:

BEGIN

TASK CTASK;
ARRAY SHEET[0:32];

PROCEDURE ALGOLCOMPILER(SHEET);
ARRAY SHEET [*] ;
EXTERNAL;

REPLACE CTASK.NAME BY "*SYSTEM/ALGOL ON DISK.";
REPLACE CTASK.FILECARDS BY

"FILE CARD (KIND=DISK, TITLE=ALGOL/TASK);"
II FILE CODE (KIND=DISK, TITLE=OBJECT /ALGOL/TASK) ; II
48"00";

REPLACE SHEET BY 0 FOR 33 WORDS;
SHEET[8] := VALUE(LIBRARY); % This statement specifies the

% object code file disposition.
SHEET [0] := 0 & 1[47:1];

CALL ALGOLCOMPILER(SHEET) [CTASK];

END.

The following is an example of initiating a utility from ALGOL. This sample program
includes a statement that initiates LOGANAL YZER:

BEGIN
TASK T;
PROCEDURE LOGRUN (FORMAL OPTiONS);

ARRAY FORMAL_OPTIONS[*];
EXTERNAL;

ARRAY ACTUAL_OPTIONS[0:19];
REPLACE T • NAME BY "*SYSTEM/LOGANALYZER ON DISK. II ;

REPLACE ACTUAL_OPTIONS BY IIPRINTER JOB 126011 ,4811 0011
;

CALL LOG RUN (ACTUAL_OPTIONS) [T];
END.

8600 0494-000

Tasking from Programming Languages

The following ALGOL example submits WFL programs for execution in two different
ways. The first ZIP statement submits the WFL program stored in ru:ray WFLARRAY.
The second ZIP statement submits the WFL program stored in the file WFL/TEST. Note
the use of triple quotes (""") in WFLARRAY wherever a single quote (") is to occur in the
WFL program.

BEGIN
EBCDIC ARRAY WFLARRAY[1:120];
FILE WFLFILE(KIND=DISK,NEWFILE=FALSE,DEPENDENTSPECS=TRUE,

TITLE="WFL/TEST.");
REPLACE WFLARRAY BY

"CLASS=2;JOBSUMMARY=SUPPRESSED;ELAPSEDLIMIT=120;"
"MYSELF(STATION=MYSELF(SOURCESTATION));"
" DIS P LAY (" II " H I 1111 II) ; " ;

ZIP WITH WFLARRAY;
ZIP WITH WFLFILE;

END.

COBOL74
COBOL is available in three different A Series implementations: COBOL (68) ,
COBOL74, and COBOL85. These correspond to the ANSI-68, ANSI-74, and ANSI-85
levels of COBOL, respectively. Note that COBOL(68) is frequently referred to simply
as COBOL in other A Series documentation. The suffix (68) is used in this guide to
differentiate the ANSI -68 version of COBOL from the other versions.

Of the A Series COBOL implementations, COBOL74 and COBOL(68) incorporate a full
range of tasking capabilities. COBOL74 is the newer of these two languages and the
preferred language for writing new COBOL tasking applications. COBOL85 does not
have tasking capabilities at this time. In the following subsections, statements about
COBOL74 apply equally to COBOL(68) except where otherwise noted .

. For further information about COBOL74, refer to theA Series COBOLANSI-74
Programming Reference Manual, Volume 1: Basic Implementation. For further
information about COBOL(68), refer to the A Series COBOL ANSI-68 Programming
Reference Manual.

Structuring a COBOL74 Program

In a typical COBOL74 program, the outer block of the program is the only block of the
program. Paragraphs and sections within a COBOL74 program are not considered
blocks, because executing a paragraph or a section does not result in the creation of an
activation record.

A COBOL74 program can contain more than one block only if the Binder is used to
bind a procedure from a separate object code file into the program. The bound-in
procedure could be another COBOL74 program or a procedure from a program written
in some other language. A COBOL74 program can enter, but cannot initiate, a bound-in
procedure.

86000494-000 4-19

Tasking from Programming Languages

The following rules govern COBOL74 access to external procedures:

• Separate programs

A COBOL74 program can declare external procedures and use them to initiate
separ~te programs.

• Passed external procedures

COBOL74 does not provide any method for passing procedures as parameters.
Therefore, a COBOL74 program generally has no access to passed external
procedures. Thunks are the only exception to this rule. When a program passes a
constant or an expression by name to a COBOL 74 program, the system creates a
thunk. Whenever the COBOL 74 program interrogates the parameter, the system
executes the thunk on the COBOL74 program's process stack.

• Imported library procedures

A COBOL 74 program can enter, but cannot initiate, a procedure imported from a
library.

A critical block exit error can occur if the COBOL74 program terminates before an
asynchronous offspring or a coroutine. For information about how to prevent such
critical block exits, refer to Section 2, "Understanding Interprocess Relationships."

Initiating Processes from COBOL74

4-20

A COBOL74 program can initiate separate programs as processes, but cannot initiate
internal sections and paragraphs.

Separate object code files are initiated by statements that have the following general
form:

<verb> <task variable> WITH <section name> [USING <parameter list>]

The verb in this statement can be CALL, which initiates a synchronous, dependent
process; PROCESS, which initiates an asynchronous,· dependent process; or RUN, which
initiates an independent process. EXECUTE is a synonym for RUN.

The task variable in this statement is a data item declared with a usage of TASK,
CONTROL-POINT, or CPo .,

The section name in this statement must have been previously defined in the
DECLARATIVES portion of the PROCEDURE DIVISION. The section ~e definition
in the DECLARATIVES must be followed by a USE EXTERNAL statement.

8600 0494-000

Tasking from Programming Languages

The COBOL74 program must also associate an object code file title with a < section
name> by one of the following methods:

• By using a mnemonic name in the SPECIAL· NAMES paragraph. This is the
preferred method.

• By using a MOVE statement to assign the object code file title to the identifier that
was specified in the USE EXTERNAL statement in the DECLARATIVES.

• By assigning the NAME task attribute to the task variable before task initiation.
The title assigned must be a string that is enclosed in quotes and terminated with a
period.

The USING <parameter list> clause passes parameters to the initiated program. If no
parameters are to be passed, you can omit this clause.

Using Coroutines in COBOL74

You can implement coroutines in COBOL74 through the use of CALL, CONTINUE,
and EXIT PROGRAM statements. The CALL statement creates a synchronous task
that is an active coroutine and changes the parent process into a continuable coroutine.
The task can return control to its parent by executing an EXIT PROGRAM statement.
The parent can return control to its task by executing a CONTINUE < task variable>
statement.

The EXIT PROGRAM statement, in addition to transferring control to the parent, also
specifies where execution resumes when the parent later continues the task. The simple
form EXIT PROGRAM specifies that the task resumes from the beginning. The EXIT
PROGRAM RETURN HERE form specifies that the task resumes with the statement
that follows the EXIT PROGRAM statement.

Entering Individual COBOL74 Procedures

COBOL74 allows the use of certain special formats for the CALL statement that enter,
rather than initiate, a procedure.

A COBOL74 program can use a CALL statement with one of the following forms to enter
a bound-in procedure:

CALL <section name>.
CALL <section name> USING <parameter list>.

A COBOL74 program can use any of several forms of the CALL statement to enter an
imported library procedure. The following is an example:

CALL "PROCEDUREDIVISION OF OBJECT/COBOL74/PROG" USING PARAMl.

By contrast, the GO and PERFORM statements do not enter procedures. They simply
transfer control to a selected paragraph or section without creating an activation record.

8600 0494-000 4-21

Tasking from Programming Languages

Initiating Compilations from COBOL74

COBOL74 does not include any statement specifically for initiating compilations.
However, a COBOL74 program can submit a WFLjob that includes a COMPILE·
statement. Alternatively, a COBOL74 program can initiate a compiler like any other
program, with a CALL, PROCESS, or RUN statement.

Initiating Utilities from COBOL74

COBOL 74 does not include any statements specifically for initiating utilities. However,
the CALL, PROCESS, and RUN statements can initiate any utility and pass any
parameters that are required by the utility.

Initiating Interactive Processes from COBOL74

A COBOL74 program initiated from a MARC or CANDE session inherits the STATION
task attribute of the session. The STATION attribute is, in turn, inherited by any
processes initiated by the COBOL74 program. As a result, these processes can open a
remote file at the originating terminal without having to make any special remote file
assignments.

However, a COBOL74 program initiated from a WFLjob or from an ODT might not
inherit a STATION value. For further information, refer to "Work Flow Language
(WFL)" earlier in this section and to "Communicating with an ODT" in Section 3,
"Tasking from Interactive Sources."

Submitting WFL Jobs from COBOL74

4-22

A COBOL74 program can submit WFL jobs with a statement of the following form:

CALL SYSTEM WFL USING <identifier>

The identifier in this statement must be associated with a data item that contains the
complete WFL source program.

Note that when a COBOL74 program submits a WFLjob, any messages produced by the
WFL job or its descendants are not forwarded to the CANDE or MARC session that
originated the COBOL74 program. However, you can use the CANDE ?MSG command
or the MARC SMSG command to display these messages.

The syntax for submitting WFL jobs is slightly different in COBOL(68). In that
language, you must use a statement of the following form, where < identifier> is the
name of an array or file containing the source WFL program: (

CALL SYSTEM ZIP <identifier>.

8600 0494-000

Tasking from Programming Languages

Access to Task Attributes in COBOL74

A COBOL74 program can access task attributes by using a task variable. A COBOL74
program can create a task variable by declaring a data item with a USAGE of TASK, Cp,
or CONTROLPOINT in the DATA DESCRIPTION entry.

The MYSELF and MYJOB task variables are available in COBOL74 and enable a
COBOL74 program to access its own task attributes or those of its job.

A COBOL74 program can assign task attribute values using the CHANGE statement
(the preferred method), the MOVE statement, or the SET statement. A COBOL74
program can interrogate task attributes using the MOVE statement. COBOL(68)
supports MOVE and SET statements, but does not support the CHANGE statement.

COBOL74 programs can use all types of task attributes, including event-valued and
task-valued task attributes.

Invoking COBOL74 Programs

Most COBOL74 programs can be invoked in either of two ways: through process
initiation statements or through the library linkage mechanism. If the COBOL74
program is invoked through the library linkage mechanism, the program automatically
freezes and exports the PROCEDURE DMSION. This automatic freeze occurs even
though the program does not include a FREEZE statement or export declaration. For
further information about COBOL74 library capabilities, refer to Section 18, "Using
Libraries. "

Communicating with Other Processes from COBOL74

COBOL 74 programs have access to almost all the interprocess communication methods
discussed in this guide, including call-by-reference parameters, events and interrupts,
port files, and libraries. The only interprocess communication method that does
not apply to COBOL74 is the use of globally declared objects, because COBOL74
cannot initiate an internal procedure. For details about any of these interprocess
communication methods, refer to Part II, "Interprocess Communication."

Restarting COBOL(68) Processes

A CO~OL(68) process can use a CHECKPOINT statement to create a checkpoint file
that describes the current process state. You can use the checkpoint file after a halt/load
to restart the process. The CHECKPOINT statement is not available in COBOL74. For
further information, refer to Section 11, "Restarting Jobs and Tasks."

8600 0494-000 4-23

Tasking from Programming Languages

COBOL74 Examples

4-24

The following COBOL74 program initiates a separate COBOL74 program called
OBJECT/COBOL/TEST using the task variable TASK-V AR-1:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TASK-VAR-l USAGE IS TASK.
01 EXT-NAME PIC X(80).
PROCEDURE DIVISION.
DECLARATIVES.
PROC-EXTERNAL SECTION.

USE EXTERNAL EXT-NAME AS PROCEDURE.
END DECLARATIVES.

START-HERE SECTION.
PI.

MOVE "OBJECT/COBOL/TEST." TO EXT-NAME.
PROCESS TASK-VAR-1 WITH PROC-EXTERNAL.

PROCWAIT SECTION.
P2.

WAIT AND RESET UNTIL ATTRIBUTE EXCEPTIONEVENT OF MYSELF.
IF ATTRIBUTE STATUS OF TASK-VAR-1 IS GREATER THAN

VALUE TERMINATED THEN GO PROCWAIT.
STOP RUN.

The following COBOL74 program also invokes OBJECT/COBOL/TEST; but this
program invokes OBJECT/ALGOL/TEST as an imported library procedure rather than
as a task. OBJECT/COBOL/TEST is executed as part of the calling process.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
START-HERE SECTION.
PI.

CALL npROCEDUREDIVISION IN OBJECT/COBOL/TESTn•
STOP RUN.

8600 0494-000

Tasking from Programming Languages

The following is the program OBJECT/COBOLf!'EST, which can be invoked by either of
the preceding two programs:

lDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 MIXNO BINARY PIC 9(11).
PROCEDURE DIVISION.
START-HERE SECTION.
Pl.

MOVE ATTRIBUTE MIXNUMBER OF MYSELF TO MIXNO.
DISPLAY MIXNO.

STOP RUN.

The following COBOL74 program submits WFL input in array form for execution. The
WFL statements are stored in an array of picture items. Note that if any of the WFL
statements includes a quotation mark ("), the quotation mark must be represented by
two quotation marks ('lI!) in the MOVE statement that stores the statement in the array.
The use of double quotation marks'is necessary because the compiler interprets a single
quotation mark as the end of the WFL input rather than as part of the WFL input.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PARAM.

05 PARAM-1
05 PARAM-2
05 PARAM-3

PROCEDURE DIVISION.
START-HERE SECTION.
Pl.

PIC X(80).
PIC X(80).
PIC X(80).

MOVE "CLASS=2;JOBSUMMARY=SUPPRESSED;ELAPSEDLIMIT=120;" TO PARAM-1.
MOVE "MYSELF(STATION=MYSELF(SOURCESTATION»;II TO PARAM-2.
MOVE "DISPLAY (IIIIHI AGAIN'"');" TO PARAM-3.
CALL SYSTEM WFL USING PARAM.

STOP RUN.

8600 0494-000 4-25

Tasking from Programming Languages

4-26

The following COBOL74 program initiates a utility. This example also shows how to pass
parameters to a task from a COBOL74 program.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TASK-VAR-1 USAGE IS TASK.
01 EXT-NAME PIC X(80).
01 ACTUALPARAM PIC X(19).

LOCAL-STORAGE SECTION.
LD PARAMS.
01 FORMALPARAM PIC X(19).

PROCEDURE DIVISION.
DECLARATIVES.
PROC-EXTERNAL SECTION.

USE EXTERNAL EXT-NAME AS PROCEDURE
WITH PARAMS USING FORMALPARAM.

END DECLARATIVES.
START-HERE SECTION.
PI.

MOVE "*SYSTEM/LOGANALYZER ON DISK." TO EXT-NAME.
MOVE "PRINTER JOB 1260" TO ACTUALPARAM.
CALL TASK-VAR-1 WITH PROC-EXTERNAL USING ACTUALPARAM.
STOP RUN.

The following COBOL74 example initiates a compilation:

IDENTIFICATION .DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TASK-VAR-1 USAGE IS TASK.
01 EXT-NAME PIC X(80).
01 VALUE-ONE PIC 9(11) BINARY VALUE 1.
01 ACTUALPARAM.

03 PARAMWORD BINARY PIC 9(11) OCCURS 33.
LOCAL-STORAGE SECTION.
LD PARAMS.
01 FORMA LPARAM •

03 FORMALWORD BINARY PIC 9(11) OCCURS 33.
PROCEDURE DIVISION.
DECLARATIVES.
PROC-EXTERNAL SECTION.

USE EXTERNAL EXT-NAME AS PROCEDURE
WITH PARAMS USING FORMALPARAM.

END DECLARATIVES.
START-HERE SECTION.
PI.

MOVE "*SYSTEM/ALGOL ON DISK. II TO EXT -NAME.
MOVE VALUE LIBRARY TO PARAMWORD (9).

8600 0494-000

Tasking from Programming Languages

MOVE VALUE-ONE TO PARAMWORD (1) [00:47:01].
CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-l TO

IIFILE CARD (KIND=DISK,TITLE=ALGOL/TASK);II.
CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-1 TO

IIFILE CODE (KIND=DISK,TITLE=OBJECT/ALGOL/TASK);II.
CALL TASK-VAR-1 WITH PROC-EXTERNAL USING ACTUALPARAM.
STOP RUN.

In this example, the COBOL74 program initiates the compiler directly as a task. An
alternative would be for the program to submit in array form a WFL program that
contains a COMPILE statement.

Other Languages
The other user languages available on A Series systems are APLB, BASIC, C,
COBOL85, FORTRAN, FORTRAN77, Pascal, PL/I, and RPG. These languages are not
primarily intended for process initiation and control. However, most of these languages
have one or more of the following tasking capabilities:

• Submitting WFL jobs

If a program can submit a WFL job, the job can, in turn, initiate and control
programs written in any language.

• Invoking library procedures

You can implement ALGOL or COBOL74 libraries that export procedures that
initiate or control processes. Any language that can use libraries can invoke these
procedures.

• Using bound-in procedures

You can bind ALGOL procedures or complete COBOL74 programs into programs
written in other languages. These bound-in procedures can be designed to initiate
and control processes.

The following are the tasking capabilities of each language:

• APLB
Provides the task utility, which can be used to initiate tasks and to read or write
task attributes. Also provides the zip utility for submitting WFL jobs. For further
information, refer to the A Series APLB Programming Reference Manual.

• BASIC

Has no tasking capabilities. This language is described in the A Series BASIC
Programming Reference Manual.

• C
Has no process-initiation capabilities. C programs can invoke library procedures in
libraries that are written in other languages. For further information, refer to the
A Series C Programming Reference Manual.

86000494--000 4-27

Tasking from Programming Languages

4-28

• COBOL85

Has no process-initiation capabilities. COBOL85 programs can invoke procedures
in libraries that are written in other languages. Additionally, you can add tasking
features to a COBOL85 program by binding in ALGOL procedures or COBOL74
programs. For further information, refer to the A Series COBOL ANSI-85
Programming Reference Manual, Volume 1: Basic Implementation.

• FORTRAN

Can include ZIP statements that are used to submit WFL jobs for execution.
FORTRAN programs can invoke library procedures in libraries that are written in
other languages. Additionally, you can add tasking features to a FORTRAN program
by binding in ALGOL procedures or COBOL74 programs. For further information,
refer to the A Series FORTRAN Programming Reference Manual.

• FORTRAN77

Can invoke library procedures in libraries that are written in other languages.
Additionally, you can add tasking features to a FORTRAN77 program by binding in
ALGOL procedures or COBOL74 programs. For further information, refer to the
A Series FORTRAN77 Programming Reference Manual

• Pascal
Can invoke library procedures in libraries that are written in other languages.
Additionally, you can add tasking features to a Pascal program by binding in ALGOL
procedures orCOBOL74 programs. For further information, refer to theA Series
Pascal Programming Reference Manual, Volume 1: Basic Implementation.

• PL/I
Provides the process-initiation statements that are standard to this language. PL/I
programs can read or assign task attributes. PL/I programs can also invoke library
procedures in libraries that are written in other languages. For further details, refer
to theA Series PL/I Reference Manual.

• RPG
Can include ZIP statements that submit WFL jobs for execution. An RPG program
can use the external indicators Ul through UB to interrogate the SWl through
SW8 task attributes. For further information, refer to the A Series Report
Program Generator (RPG) Programming Reference Manual, Volume 1: Basic
Implementation.

8600 0494-000

Section 5
Establishing Process Identity and
Privileges

Process identity is the term used in this guide for a number of task attributes and
other features that uniquely identify a process and its capabilities. The "Process
Identity" subsection of this section describes the various aspects of process identity and
their implications for security, billing, and operations. The "Process Security Classes"
subsection explains the security classes a process can belong to, and the privileges
associated with each of these classes.

Process Identity
Some of the aspects of process identity, such as mix numbers, are assigned by the
operating system. You can control other aspects of process identity, such as the
usercode, although the system provides default values for these aspects if you do not.

Mix Number and Stack Number

In Section 1, "Understanding Basic Tasking Concepts," it was pointed out that there can
be multiple processes running that are instances of the same object code file. Thus, the
object code file title cannot serve as a unique identification for a process. Instead, the
system assigns two identifying numbers to a process: the mix number and the stack
number.

The mix number is a 4-digit number that the system assigns to each process when the
process is initiated. The name arises because all the processes running on the system are
collectively referred to as the system mix, and the mix number distinguishes a process
from the other processes in the mix. Mix numbers identify processes in the system log as
well as in many system commands and CANDE commands that affect running processes
or provide information about them.

Additionally, mix numbers serve to identify entities that are not processes, but which
resemble processes from the point of view of the operator or user. Thus, Menu-Assisted
Resource Control (MARC) and Command and Edit (CANDE) assign a mix number to
each session at log-on time. (The mix number of a session is also known as the session
number.) The system assigns mix numbers to WFL jobs when they are first entered into
ajob queue. This mix number remains the same when the WFLjob leaves the queue
and begins executing.

The mix numbers of processes, sessions, and queuedjobs are chosen from the same
pool of numbers, so no two of these different entities have the same mix number. Each
process, session, or queued WFL job is generally assigned a mix number one higher than
the last assigned mix number. However, a jump in the numbering can occur after a

8600 0494-000 . 5-1

Establishing Process Identity and Privileges

halt/load. This jump occurs because the system periodically reserves a range of numbers
for use by new processes. After a halt/load, the system avoids reusing any number in the
range reserved at the time of the halt/load.

When the mix numbers reach 9999, the numbering starts over. Certain low numbers are
reserved and are not used. Also, a number cannot be reused if the last process to which
it was assigned is still in the mix.

Processes can determine their own mix numbers, or the mix number of a related
process, by interrogating the MIXNUMBER task attribute. However, the mix number
has little use in programmatic tasking. A process accesses the task attributes of another
process by specifying a particular task variable, rather than by specifYing a particular
mix number.

Like the mix number, the stack number of a process is a number assigned by the
operating system. The stack number is unique to the process and remains constant for
the lifetime of the process. However, while the mix number is intended primarily for use
by system operators, the stack number of a process is intended primarily for internal use
by the operating system. Yet the stack number is visible to operators and programmers
in the following contexts:

• The stack number appears in the system log records for Major Type 0, Minor Type 1
(Establish Identity) and Major Type 1, Minor Types 1 (BOJ), 2 (EOJ), 3 (BOT), and
4 (EOT). The stack number is expressed in hexadecimal format.

• The output from the OT (Inspect Stack Cell) system command includes the stack
number for the process. The stack number is expressed in hexadecimal format.
Thus, in the following output, the stack number is OlIB:

0118 STACK CELL 20= 7 09624650E003 (HEX)

• The PROCESSID function in ALGOL returns the stack number of the process. The
stack number is expressed in decimal format.

• The stack number can appear in memory dump analyses created by
DUMP ANALYZER. The stack number is expressed in hexadecimal format.

Usercode, Access Code, and Charge Code

5-2

USERCODE, ACCESS CODE, and CHARGE are three closely-related task attributes
that help to specify the identity and privileges of a process.

The USERCODE task attribute stores a value that is intended to identify the user who
initiated the process. In actual practice, more than one user of the system can use the
same usercode, but only if all the users agree to do so. This is because you must know
the password associated with a usercode to use the usercode, and only the owner of the
usercode can tell you the password.

U sercodes are created by the security administrator for the system, usually through
the use of the MAKEUSER utility. The security administrator can associate a variety
of usercode attributes with each usercode. Some of these usercode attributes confer
various types of special security privileges, as described under "Process Security
Classes" later in this section.

8600 0494-000

Establishing Process Identity and Privileges

Other usercode attributes interact with the values of various task attributes. Some of
these usercode attributes provide default values for the corresponding task attributes.
Other usercode attributes define a range of permitted values for a task attribute, or
specify whether the task attribute must have a value. The following are these usercode
attributes and the task attributes that are related to them:

Usercode Attribute

ACCESSCODELlST, ACCESSCODENEEDED

CHARGECODE,CHARGEREQ,
USEDEFAULTCHARGE

CANDEDESTNAME

CLASS, CLASSLlST, ANYOTHERCLASSOK

CONVENTION

DEPTASKACCOUNTING

FAMILY

FI LEACCOU NTI NG

LANGUAGE

PRINTDEFAULTS

PRIORITY

SAVEMEMORYLIMIT

TEMPFILELIMIT

Task Attribute

ACCESSCODE

CHARGE

DESTNAME

CLASS

CONVENTION

DEPTASKACCOUNTING

FAMILY

FILEACCOUNTING

LANGUAGE

PRINTDEFAULTS

PRIORITY

SAVEMEMORYLIMIT

TEMPFILELIMIT

The values supplied by usercode attributes are propagated to their corresponding task
attributes in the following ways:

• MARC and CANDE read some usercode attributes when you log on, and store the
corresponding task attribute values for your session. Thereafter, if you initiate a
process from that session, the process inherits the task attributes of the session.

• If a WFL job includes a USERCODE assignment in the job header, the WFL job
inherits the attribute values associated with the usercode.

For details about the effects of usercode attributes on task attributes, refer to the task
attribute descriptions in theA Series Task Attributes Programming Reference Manual.

The ACCESSCODE task attribute serves as a form of secondary identification, in
addition to the usercode. This identification is relevant only when a process attempts
to use a file that is guarded by a guard file; refer to "N onprivileged Status" later in this
section for further details.

The CHARGE task attribute serves as a form of group identification for billing purposes.
Thus, all the people working in a particular department might have usercodes with the
same CHARGE CODE usercode attribute. The system records the CHARGE attribute of
each process in the system log. This makes it possible for site personnel to write billing
programs that analyze the system usage on a charge code by charge code basis. For
further information about billing programs, refer to theA Series System Administration
Guide.

8600 0494-010 5-3

Establishing Process Identity and Privileges

Name

5-4

You can override·the.propagation of most usercode attril)utes to task attributes by
explicitly assigning task attributes to the process in que~tion. However, the system
enforces some consistency checks to ensure that the US:ERCODE, ACCESSCODE,
and ClIARGE attribute values are consistent with each other. For details about these
con~istency checks, refer to the descriptions of these attributes in the A Series Task
Attributes Programming Reference Manual.

A process can change its own usercode while it is running by making an assignment to
the USERCODE attribute. Such an assignment must sI>ecify the password as well as
the usercode. The system verifies the correctness of th~ usercode and password before
making the usercode assignment.

The name of a process is stored in the NAME task attril)ute of the process. The value of
this attribute is, by default, the same as the title of the (>bject code file that the process is
executing. The process name appears in system log enUies generated for the process.
The process name also appears in the output from syste:m mix display commands such as
A (Active Mix Entries), W (Waiting Mix Entries), and C (Completed Mix Entries).

In addition to aiding the operator, the process name can affect the ability of the process
to use some files. If a file has a guard file associated witP it, the guard file can include a
PROGRAM clause that specifies access rights for processes with a given name.

In some cases, the NAME value for a process can be different from its object code
file title. This can occur if a WFL process or an ALGOL process initiates an mternal
procedure. The initiating process can make an arbitrary assignment to the NAME
attribute of the new process before initiating it.

The initiating process can even assign the internal proc~ss the NAME of an entirely
different program. This method enables the process to circumvent the PROGRAM
clause in a guard file. To prevent such abuses, a CODEfILE clause is also available for
guard files. This clause ignores the process name and mstead specifies access rights
for processes having a particular object code file title. FOr details, refer to the A Series
Security Features Operations and Programming Guide·

86000494-010

Establishing Process Identity and Privileges

Object Code File

An operator can use the MP (Mark Program) system command to assign any of several
options to an object code file. Some of these options confer special types of security
status on a process, and these options are the following:

• COMPILER. This option marks an object code file with compiler status. Object code
files can also be marked with compiler status by the MC (Make Compiler) system
command, which is scheduled for deimplementation. The effects of compiler status
are described under "Compiler Status" later in this section.

• CONTROL. This option marks an object code file with control program status.
Object code files can also be marked with control program status by the CP (Control
Program) system command, which is scheduled for deimplementation. The effects
of control program status are discussed under "Controlling Process Priority" in
Section 7, "Controlling Processor Usage."

• PU. This option marks an object code file with privileged status. Object code files
can also be marked with privileged status by the PP (Privileged Program) system
command, which is scheduled for deimplementation. The effects of privileged status
are discussed under "Privileged Status" later in this section.

• SECADMIN. This option marks an object code file with security administrator
status. Object code files can also be marked with security administrator status
by the PP (Privileged Program) system command, which is scheduled for
deimplementation. The effects of security administrator status are described under
"Security Administrator Status" later in this section.

• TASKING. This option marks an object code file with tasking status. The effects of
tasking status are described under "Tasking Status" later in this section.

When an object code file is initiated, the resulting process receives the privileges that
were assigned to the object code file. The process can make some of the procedures
in the object code file available to other processes by initiating an internal procedure,
by initiating a process and passing a procedure parameter, or by becoming a library
and exporting procedures. Any of these processes temporarily assumes the privileges
assigned to the object code file while it is executing procedures from the object code file.

The following subsections explain how these privileges are propagated to processes from
object code files. .

86000494-010 5-4A

Establishing Process Identity and Privileges

5-48 86000494-010

Establishing Process Identity and Privileges

Transparent Object Code File Privileges

Most of the options available through the MP (Mark Program) system command have
only two states: set or reset. However, the MP command enables you to specify a
third state for the PU, SECADMIN, and TASKING options. This third state is called
transparent. The following are MP commands and the security categories they assign:

MP Command Security Category

MP <file title> + PU Privileged

MP <file title> + PU TRANSPARENT Privileged transparent

MP <file title> - PU Nonprivileged

MP <file title> + SECADMIN Security administrator

MP <file title> + SECADMIN TRANSPARENT Security administrator transparent

MP <file title> - SECADMIN Non-security administrator

MP <file title> + TASKING Tasking

MP <file title> + TASKING TRANSPARENT Tasking transparent

MP <file title> - TASKING Nontasking

Each option can be in only one state at a time: enabled, disabled, or transparent.
However, the three options (PU, SECADMIN, and TASKING) do not have to be in the
same state. The following command assigns privileged status and security administrator
transparent status, and removes tasking status:

MP <file title> + PU, + SECADMIN TRANSPARENT, - TASKING

The concept of transparent status is intended primarily for libraries, to enable the
actions of a library to be applied with the status of the user program that invokes the
library. If a procedure resides in an object code file that has one of these options in the
transparent state, then

• If the procedure is initiated, the resulting process is treated as if the option were
disabled.

• If the procedure is entered, it inherits the enabled or disabled state of the option of
the invoking procedure. Privileged, security administrator, or tasking status can be
inherited through a series of privileged transparent procedures.

For example, if a privileged program initiates a procedure in a privileged transparent
library, the procedure is executed as nonprivileged. However, if the privileged program
enters the same procedure instead of initiating it, the procedure is executed as
privileged.

For information about how privileged transparent status applies to file access rights,
refer to Section 19, "Using Shared Files." .

86000494-010 5-5

I
I
I
1
I
I
I
I
I
I

Establishing Process Identity and Privileges

Delayed Effects of Object Code File Privileges

A process can receive privileged, security administrator, or compiler status from an
object code file only if the process uses a code segment dictionary that was created after
the object code file was marked with the specified status. Marking an object code file
with privileged or compiler status does not affect processes that are already in progress.
Even a process initiated after the object code file is marked might not receive the
specified privileges in some situations. For further information, refer to the discussion of
code segment dictionary sharing in Section 8, "Controlling Process Memory Usage."

Copying Privileged Object Code Files

If you copy an object code file marked with privileged, security administrator, or compiler
status, the copy retains the same privileges as the original. However, the system
administrator can limit the ability to copy or execute such object code files by using the
RESTRICT (Set Restrictions) system command. For details, refer to the discussion of
the RESTRICT command in the A Series Security Administration Guide.

Originating Source

When you initiate a process through a peripheral device, the system records the type of
peripheral device in the SOURCEKIND attribute. There is one situation in which the
SOURCEKIND value can make an important difference in the capabilities of the process.
If the SOURCEKIND value is ODT, the system accords the process ODTstatus, which is
described under "Process Security Classes" in this section.

Additionally, the system records the physical unit number or logical station number
(LSN) of the originating peripheral device in the SOURCESTATION task attribute.
The value of this attribute allows messages generated by a 'process to be routed back to
the station that originated the process, so that you can easily monitor the progress of
your processes.

MARC and CANDE similarly assign the LSN of a session to the STATION task attribute
of any tasks (but not jobs) initiated from that session. Refer to Section 9, "Controlling
Process I/O Usage" for a discussion of the effects of this attribute.

The system also records the name of the originating station in the SOURCENAME task
attribute. The station name can be more stable than the LSN, which often changes after .
a halt/load or COMS quit.

Process Security Classes

5-6

A Series software provides a number of security features that you can use to regulate
the ability of processes to access other users' files or perform other restricted actions.
Processes are classified according to security classes, and each security class allows the
process to perform a somewhat different set of restricted actions.

The following subsections describe the capabilities of each of the process security classes
and explains how a process can be assigned to a particular class. For further information

86000494-010

Establishing Process Identity and Pr'ivileges·

about any of the security features discussed, refer to the A Series Security Features
Operations and Programming Guide and the A Series Security Administration Guide.

Th~ following are the security classes a user process can belong to: nonprivileged,
privileged, nonusercoded, operator display terminal (ODT), security administrator, and
compiler. A process can belong to more than one of these classes, although certain
classes are mutually exclusive. In addition, a process can belong to different security
classes at different points in its execution.

Additional security classes exist for operating system processes. For information about
system library security and library linkage classes, refer to Section 18, "Using Libraries."

For a discussion of certain special security issues that arise from the sharing of logical
files between processes, refer to Section 19, "Using Shared Files."

Nonprivileged Status

The default security class for a process is nonprivileged. On a typical system, the vast
majority of processes fall into this class. A nonprivileged process can perform any of the
following actions:

• Inspect or modify any object within the extended addressing environment of the
process. For information about the addressing environment, refer to Section 15,
"Using Global Objects," and Section 17, "Using Parameters."

• Create, remove, open, close, read, write, copy, or access the file attributes of data
files.

• Initiate, copy, remove, open, close, read, or access the file attributes of object code
files.

• Use the nonprivileged form of the GETSTATUS directory call. The nonprivileged
form of this call provides information only about directories having the same
usercode as the process.

• Use the VOLUME CHANGE form of the WFL VOLUME statement to affect tape
volumes whose F AMIL YOWNER value is the same as the usercode of the process.

• Use the WFL ARCHIVE command to back up, roll out, or restore files that have the
same usercode as the process.

The ability of a nonprivileged process to access a particular disk file is determined by the
values of certain task attributes and file attributes. The following task attributes affect
file access rights:

• USERCODE

The USERCODE value generally grants the process access to files that are stored
under the usercode. Certain USERCODE values can also grant special privileges,
as discussed under "Privileged Status" and "N onusercoded Status" later in this
section.

8600 0494-000 5-7

Establishing Process Identity and Privileges

5-8

• ACCESSCODE

The ACCESSCODE value can grant the process access to some files that are
protected by guard files, as discussed later in this subsection.

• NAME
The value of this task attribute can grant the process access to some files that are
protected by guard files, as discussed later in this subsection.

• FILEACCESSRULE

The effects of this task attribute are discussed in Section 19~ "Using Shared Files."

The process that creates a disk file can assign security-related file attributes to
determine which nonprivUeged processes can access the file. Thereafter, only privileged
processes or processes running with the same usercode as the file can change the
values of these security-related file attributes. Following are brief descriptions of the
security-related file attributes:

• TITLE

This file attribute includes the usercode under which the file is stored. For
nonusercoded files, an asterisk (*) is included instead of a usercode. Only privileged
or nonusercoded processes can create a nonusercoded file.

• SECURITYTYPE

This file attribute specifies whether a process must have the same usercode as the
file in order to access the file. A value of PUBLIC allows any process to access the
file. A value of PRIVATE enables nonprivileged processes to access the file only if
the processes are running under the same usercode as the file. For nonusercoded
files, a value of PRIVATE enables only privileged processes and nonusercoded
processes to access the file. A value of GUARDED or CONTROLLED specifies that
a guard file is used to determine which nonprivileged processes can access the file.

• SECURITYUSE

This file attribute specifies whether nonprivileged processes having a usercode
different from the file can read from or write to the file. SECURITYUSE does not
restrict the ability to initiate an object code file. SECURITYUSE has effect only if
the SECURITYTYPE file attribute value is PUBLIC.

• SECURITYGUARD

For files with a SECURITYTYPE value of GUARDED or CONTROLLED, the
SECURITYGUARD file attribute specifies the title of the guard file to be used.

These file attributes are described in detail in the A Series File Attributes Programming
Reference Manual.

Guard files can be created using the GUARDFILE utility, which is described in the
A Series Security Features Operations and Programming Guide. A guard file can
include detailed information about the types of access allowed to various nonprivileged
processes. The guard file can include USERCODE or ACCESSCODE clauses that
discriminate between processes on the basis of the corresponding task attributes. The
guard file can also include a PROGRAM clause that discriminates between processes on
the basis of the NAME task attribute value. .

8600 0494-000

Establishing Process Identity and Privileges

If a guard file is used, it overrides the value of the SECURITYUSE attribute.

If the InfoGuard tape volume security feature is enabled on the system, then the
rights of a nonprivileged process to access a particular tape file are regulated by
the task attributes and file attributes listed in the previous discussion as well as
by the tape volume attributes FAMILYOWNER, PERMANENTLYOWNED, and
MATCHONLYSERIALNO. The tape volume attributes can be assigned only by a
privileged user or a privileged process with the WFL VOLUME statement. The security
administrator can enable tape volume security by using the SECOPT (Security Options)
system command to set the security option TAPECHECK to AUTOMATIC. If tape
volume security is not enabled, then a nonprivileged process can open a tape file on any
tape unit that is not currently in use by another process.

An additional security restriction for disk files is system file status. The operating
system marks disk files that are part of the acting system software as system files.
Examples of system files are the object code file of the current MCp, the job description
file, and the current system log. An application process cannot remove or change the
title of any system file. Some files have a modified form of system file status. Thus, the
USERDATAFILE has system file status and additionally is protected from being read by
any application process (only system software can read this file).

Privileged StatlJs

A privileged process has the capabilities of a nonprivileged process, as well as the
following capabilities:

• The ability to access physical files stored under other usercodes, regardless of the
SECURITYTYPE, SECURITYUSE, and SECURITYGUARD file attribute values.
Any guard files are ignored.

• The ability to use the WFL ARCHIVE command to backup, roll out, or restore files
regardless of their usercode.

• The ability to initiate nonusercoded processes and create nonusercoded files.

• The ability to survive most task attribute access errors.

Privileged status also grants several other capabilities on systems where the InfoGuard
security administrator feature is not enabled. On systems where the security
administrator feature is enabled, these capabilities are wholly or partially reserved for
processes with security administrator status. (Refer to "Security Administrator Status"
later in this section.) The following are the capabilities:

• The ability to create or alter usercode definitions.

• The ability to access certain system interfaces, including the DCKEYIN,
GETSTATUS, and SETSTATUS functions in DCALGOL.

• The ability to read from the USERDATAFILE.

• The ability to remove the current INFOGUARDSUPPORT library object code file.
This file has a modified form of system file status that enables it to be removed by
privileged processes, but does not allow title changes.

8600 0494-010 5-9

Establishing Process Identity and Privileges

Note that the following types of file access are not granted by privileged status: the
ability to remove or change the titles of most system files, and the ability to write
to object code files. Further security restrictions can apply if the privileged process
accesses the file through a shared logical file, as discussed in Section 19, "Using Shared
Files." .

A process is automatically considered privileged if it is running under a privileged
usercode. The usercode of a process is stored in the USERCODE task attribute. An .
operator can assign privileged status to a usercode by running the MAKEUSER utility or
using the MU (Make User) system command. A usercode can also be assigned privileged
status by a program that uses the USERDATA function in DCALGOL. For further
information about these features, refer to the A Series Security Administration Guide.

A process usually inherits the usercode of the session or process that initiated it. A
different usercode can be assigned by task attribute assignment, use of the DCALGOL
USERDATA function, or use of the WFL USER statement. However, in each of these
cases, the statement that assigns the usercode must also specify a password, which is
checked for validity. Only processes with special privileges can assign a usercode without
specifying a password. Message control systems (MCSs) and processes with tasking
status use this feature when assigning a usercode to a process initiated by a session.

If a process is not running under a privileged usercode, then the ability of a process to
perform a privileged action is determined by the privilege status of the object code file
that c~ntains the request.

A process can execute code from several different object code files. This is the case if
the process has entered either a library procedure or a passed external procedure.
(For an introduction to external procedures, refer to Section 1, "Understanding Basic
Tasking Concepts.") The various object code files might not have the same privilege
status. The current privilege status for the process is determined by the privilege status
of the object code file containing the procedure that was most recently entered. This
procedure c.ontains the code that is currently being executed. For further details about
this concept, refer to "Object Code File" earlier in this section.

Note that a privileged program has no special privileges when accessing files on a remote
host. For example, suppose a process sets the HOSTNAME attribute of a file to specify
a remote host, and then attempts to open that file. This action is executed with privilege
on the remote host only if the process usercode is privileged on that host.

Nonusercoded Status

5-10

A nonusercoded process is one whose USERCODE task attribute value is a null string.
By default, a process runs without a usercode if you initiate it from one of the following
sources: a nonusercoded MARC session, a card reader, or a load control tape.

86000494-010

Establishing Process Identity and Privileges

In addition, a process initiated from an ODT is nonusercoded by default unless one of the
following conditions is true:

• The ODT has been assigned a terminal usercode by the TERM (Terminal) system
command. The terminal usercode is the default usercode for most processes
initiated at that ODT.

However, processes initiated at an ODT by a primitive system command default to a
null usercode, even if there is a terminal usercode associated with the ODT. ??COpy
(Copy Files) and ??RUN (Run Code File) are two primitive system commands that
initiate processes.

• The process is a remote WFL job and the system has a host usercode. Host
usercodes are assigned by the HU (Host U sercode) system command.

Processes initiated by a nonusercoded process are, by default, also nonusercoded.

Processes initiated by usercoded processes are, by definition, always usercoded. It is
possible for a process to assign a null usercode to a task variable that is not in use, .and
then initiate a process with that task variable. However, the null usercode value in the
task variable is overridden by task attribute inheritance, and the new process runs with
the usercode of its initiator.

It is possible for a usercoded process to be assigned a null usercode after initiation.
However, only a privileged process can assign a null usercode to an in-use process. Thus,
for example, a privileged process can change its own usercode to a null usercode. When
the usercode of a privileged process is changed to a null usercode, the process retains its
privileged status. .

A privileged process can also initiate a task with a nonprivileged usercode, and then
change the usercode of the task to a null while the task is running. The task then
assumes nonusercoded security status. Processes that are nonusercoded from the time
they are first initiated also have nonusercoded security status.

A process with nonusercoded status has the same capabilities as a nonprivileged process, .
with the following additions:

• The ability to create nonusercoded files; that is, files whose TITLE file attributes
begin with an asterisk (*) instead of a usercode.

• The ability to initiate a nonusercoded process; that is, a process whose USERCODE
task attribute value is a null string.

• The ability to use the UNITNO file attribute, even on a system running with the
security option S2RESTRICTIONS set.

86000494-000 5-11

Establishing Process Identity and Privileges

Further, certain WFL statements are treated as privileged when submitted by a
nonusercoded process. These statements, and other conditions affecting their privilege
status, are shown in Table 5-1. This table refers to two concepts not discussed
previously:

• Single-statement WFL inputs. These are single WFL statements entered directly at
an ODT, entered in CANDE or MARC with the WFL prefix, or submitted in array
form by a ZIP statement in a program.

• ODT status. This concept is defined under "ODT Status" later in this ·section.

Table 5-1. WFL Statements Executed with Privilege

WFL Statements Conditions Granting Privilege

ADD, COPY Privileged if the process is nonusercoded. "

CHANGE, REMOVE, RERUN, Privileged if a nonusercoded, single-statement WFL input.
SECURITY, START

PRINT Privileged if a nonusercoded, single-statement WFL input
that does not have ODT status.

VOLUME Privileged if either of the followi ng is true:

• The process is nonusercoded and has ODT status .

• The process has ODT status, only the VOLUME ADD or
VOLUME DELETE form of the command is used, and
the statement affects only volumes with the same
usercode as the process.

oor Status

5-12

A process is said to have ODT.status if it was initiated from an ODT, or if it is descended
from a process initiated from an ODT. The exception to this ru1e is that processes
initiated with the ??RUN (Run Code File) primitive system command do not receive aDT
status, nor do the descendants of such processes.

Processes initiated from an ODT frequently run without a usercode and receive
nonusercoded status, as discussed under "Nonusercoded StatuS"" earlier in this section.

Regardless of whether it has a usercode, a process with aDT status is granted access to
all GETSTATUS calls in DCALGOL. This access includes the privileged form of the
GETSTATUS directory call. (The privileged form of this call can return information
about directories stored under any usercode.)

Certain WFL statements are treated as privileged when submitted by a process with
ODT status'. For a list of these statements, and other conditions affecting their privilege
status, refer to Table 5-1, "WFL Statements Executed with Privilege".

8600 0494-000

Establishing Process Identity and Privileges

SYSTEMUSER Status

A process receives SYSTEMUSER status if it is running under a usercode whose
SYSTEMUSER usercode attribute is set. SYSTEMUSER status enables a process to
use the DCKEYIN, GETSTATUS, and SETSTATUS functions in DCALGOL, even if
the process does not have privileged status. A process can use these functions to submit
system commands and perform other system operations functions.

By default, SYSTEMUSER status gives access to all the possible DCKEYIN,
GETSTATUS, and SETSTATUS calls. However, certain restrictions can apply on
a system running InfoGuard security enhancement software. Refer to the following
subsection, "Security Administrator Status."

Security Administrator Status

On a system where InfoGuard security enhancement software is installed, the
system administrator can enable a special security administrator status. If security

, administrator status is enabled for the system, then certain system commands that
would otherwise be available to any privileged or SYSTEMUSER process are instead
reserved for use only by processes with security administrator status. The DCKEYIN
and SETSTATUS functions corresponding to these system commands are similarly
restricted. In addition, the ability to create or alter usercode definitions, which would
otherwise be available to any privileged user, is restricted to processes with security
administrator status.

The security administrator can also use the RESTRICT command to prevent or limit the
use of certain system commands. For information about the RESTRICT command, refer
to the A Series System Commands Operations Reference Manual.

The system administrator can enable security administrator status on the system by
setting the system SECADMIN option. This option is set using the ??SECAD system
command. Once the SECADMIN option is set, a process assumes security administrator
status if either of the following conditions are true:

• The process is running with a usercode for which the SECADMIN attribute is set in
the USERDATAFILE.

• The process is executing code from an object code file that has been marked with
system administrator status. This concept is discussed further under "Object Code
File" earlier in this section.

For further information about security administrator capabilities, refer to the A Series
Security Administration Guide.

Compiler Status

A process with compiler status is allowed to create an object code file or write to an
existing object code file. You can mark an object code file with compiler status by using
the MP <file title> + COMPILER form of the MP (Mark Program) system command.
An operator can use this command to mark any program with compiler status, whether
or not the program is really a compiler.

86000494-010 5-13

Establishing Process Identity and Privileges

If a process without compiler status attempts to write to an object code file that is a
permanent file, the write operation is not performed and the process is abnormally
terminated. A process without compiler status can write to an object code file that is a
temporary file. However, if the process attempts to lock the file, the system changes
the file from an object code file into a data file. (For information about the concepts
of permanent and temporary files, refer to the A Series I/O Subsystem Programming
Guide.)

Note that a compiler program has no special privileges when accessing object code files
on a remote host. For example, suppose you initiate a compiler and file equate the
HOSTNAME attribute of the CODE output file to a remote host. The compiler receives
a file attribute error when it attempts to create the object code file. A compiler must
create object code files on the host where the compiler is running.

Message Control System Status

Message control systems (MCSs) differ from other interactive programs in that they
interface directly to the data comm subsystem (rather than opening a remote file) in
order to send or receive messages from terminals. This interface is possible because,
MCSs are written in DCALGOL, an extended version of ALGOL with special data comm
capabilities. The system extends a number of special privileges to MCSs.

How an MCS Acquires Its Privileges

The MCS security privileges and MCS priority are not granted to a program simply
because it is written in DCALGOL; the system must also recognize the program as an
MCS. Two things are necessary for the system to recognize a program as an MCS:

• Each MCS on a system must be named in the data comm network definition for that
system. Only one MCS of a given name can be active.

• The MCS must invoke the DCALGOL DCWRITli' function to initialize its primary
queue. Every MCS must have such a queue and must initialize it in order to be
recognized as an MCS.

Priority of an MCS

5-14

An MCS automatically runs in the saIne priority category that control programs
run in. This priority category gives the MCS higher priority than WFL jobs and
application programs. However, the priority of an MCS is lower than that of any invisible
independent runner. The priority of MCSs relative to each other is determined by the
PRIORITY task attribute. For an explanation of process priority, refer to Section 7,
"Controlling Processor Usage." For a discussion of how and when this special priority
can be inherited by offspring of an MCS, refer to "Inheritance of MCS Status" later in
this section.

86000494-010

Establishing Process Identity and Privileges

Privileges of an MCS

MCS status includes all the privileges associated with privileged status, as discussed.
under "Privileged Status" earlier in this section. This is true even if the MCS has not
been marked as a privileged program. The following paragraphs describe other special
privileges and features of MCS status.

An MCS is allowed the following privileges with regard to the DCALGOL USERDATA
function:

• Ability to temporarily assume the usercode of a user by calling USERDATA
function 3 (Validate Usercode/password). If the MCS sets bit [1:1] of the locator
parameter to USERDATA, then the MCS temporarily loses its MCS privileges.
When bit [1:1] is set and bit [0:1] is also set, then the MCS assumes the privileges
that the requested usercode would normally have; if [1:1] is set but bit [0:1] is reset,
then the MCS runs as nonprivileged.

When an MeS uses USERDATA function 3 to temporarily assume a usercode, the
MeS does not appear in GETSTATUS mix request calls that request mix entries
with that usercode. The MeS also does not appear in the output from system
commands that display the mix and that request mix entries with that usercode.

• Ability to change a user's password with USERDATAfunction 6, subfunction 1,
which is normally disallowed on a system using password generation.

• Ability to call the USERDATA function to validate a usercode/password combination
or, optionally, a usercode without the password. This USERDATA function allows
the MeS to run with the specified usercode so the MCS can perform a function on
behalf of that usercode.

• Ability to call the USERDATA function to validate a usercode/chargecode
combination.

• Ability to call the USERDATA function to validate an accesscode/accesscode
password combination.

• Ability to call USERDATA function 9 (Privileged Fetch and Examine).

• Ability to specify that the last log-on information for a usercode should be updated as
a result of the. current USERDATA call.

• Ability to survive USERDATA errors that would normally be fatal. The errors are
returned in the USERDATA error result field.

An MeS receives the following special privileges with regard to other restricted
DCALGOL functions:

• Ability to call the DCWRITE function, which handles station message traffic.

• Ability to call the MCSLOGGER function, which creates sessions or logs session
activity. .

• Ability to survive SETSTATUS errors that would otherwise be fatal. The
SETSTATUS error reporting mechanism returns the error to the MCS process.

• Trusted status that causes the operating system not to perform validation on any
mix numbers specified by the MCS in. SETSTATUS calls.

86000494-010 5-15

I

Establishing Process Identity and Privileges

An MCS receives the following special privileges with regard to initiating processes:

• Ability to survive errors in initiating an external object code file, such as security
errors, that would otherwise be' fatal. Also, the ability to attempt to initiate a
missing external code file without becoming suspended with a NO FILE condition.
The MCS can determine if initiation was successful by inspecting the task variable
used in the process initiation statement. If initiation failed, the STATUS task
attribute has a value of BADINITIATE. The reason for the failure is reported in the
HISTORYTYPE, HISTORYCAUSE, and HISTORYREASON task attributes.

• Ability to pass a single array parameter to an offspring process by value instead of by
reference.

• Trusted status that causes the operating system not to perform validation of any
sheet array parameter the MCS passes when initiating a compiler.

An MCS receives the following special privileges with regard to task attribute access:

• Ability to survive task attribute errors that would normally be fatal. The MCS can
determine whether an error occUrred, and the type of error, by interrogating the
TASKERROR task attribute of the task variable that was accessed.

• Ability to commit task attribute errors in reading a task attribute without any error
messages resulting.

• Ability to assign values to the BACKUPFAMILY, JOBNUMBER, and
SOURCESTATION task attributes. Also, ability to set the ACCESS CODE task
attribute to a null string, and to set the FILEACCESSRULE task attribute to a
value of ACTOR.

An MCS has the following special privileges with regard to file access:

• Ability to invoke the exported MCP procedure CHANGESECURITY, which changes
the security attributes of files.

• Ability to survive security er.rors that occur while changing file security.

• Ability to call the exported MCP procedure DRCDETERMINEUSERLIMITS, which
reports on the file usage limits imposed on a user by the disk resource control (DRC)
system.

• Ability to exceed DRC limits at file open time without any error messages being
displayed. '

An MCS has sufficient privilege to access library objects that have a linkage class of 3.
For information about library linkage classes, refer to "Security Considerations" in
Section 18, "Using Libraries."

Inheritance of MCS Status'

5-16

In some cases it can be useful for an Mes to initiate one or more tasks to handle some of
its work. By default, these tasks do not receive any special privileges as a result of being
initiated by an MCS. These tasks also do not receive the special MCS priority category,
and by default they receive a PRIORITY task attribute value of 50 rather than inheriting
the PRIORITY value of the MCS. '

86000494-010

Establishing Process Identity and Privileges

However, the MCS can grant MCS privileges and priority to any of its offspring by
assigning a value of TRUE to the INHERITMCSSTATUS task attribute of the offspring.

Tasking Status

Tasking status grants a process most of the privileges associated with MCS status,
without the process actually having to be an MCS. Tasking status is well suited to
interactive programs that service multiple users and need to be able to assume the
identity of those users temporarily.

A process receives tasking status when both of the following conditions are true:

• The process is executing code from an object code file that has been marked with
tasking status. You can mark object code files with tasking status by using the
MP (Mark Program) system command. For information about how processes receive
privileges from their object code files, refer to "Object Code File" earlier in this
section.

• The process is nonusercoded. If an object code file with tasking status is initiated
under a usercode, the process runs with the privileges of that usercode. The process
receives tasking status when and if it changes its own USERCODE task attribute
value to a null string.

Tasking status provides the same privileges and restrictions as MCS status, with the
following exceptions:

• Tasking status does not grant access to the DCALGOL functions DCWRITE and
SETUP INTERCOM.

• Tasking status does not allow a process to make assignments to the
SOURCESTATION task attribute.

• Tasking status does not cause the process to run in the MCS priority category.

• Multiple instances of the same tasking program can be running at the same time.

Further, the INHERITMCSSTATUS task attribute does not cause tasking status to be
inherited.

8600 0494-010 5-17

5-18 86000494-010

Section 6
Monitoring and Controlling Process
Status

During its lifetime, a process can pass through several distinct states. These states
characterize whether the process is currently executing, and if not, why not. You can
design programs to monitor and modify process states through the use of task attributes
and related expressions. You can also monitor process status through the use of system
commands.

Understanding Process Status
From the time a process is initiated until it terminates, it is considered an in-use process.
An in-use process can pass through several process states. These process states indicate
whether the process is current executing, and if not, why not.

When a process is not in use, the task variable for that process stores any of several
process states. These process states specify if the process has not been initiated, if
initiation failed, or if the process has terminated. It is possible for the task variable to
store this information because the task variable of a process exists before the process
is initiated and continues to exist after the process terminates. In the following WFL
example, task variable T is created when the system executes the declaration TASK T,
and continues to exist until the system executes the END JOB statement:

?BEGIN JOB;
TASK T;
RUN OBJECT/PROG [T];

?END JOB

Information about process status is available through several mechanisms, including
the STATUS task attribute, the task state expression in WFL, mix display commands,
and the STACK STATE line of the Y (Status Interrogate) system command output.
Each of these programming constructs and system commands uses a slightly different
terminology to portray process status. Table 6-1 shows the possible values of the
STATUS task attribute and the corresponding status values returned by the other

8600 0494-000 6--1

Monitoring and Controlling Process Status

process monitoring methods. The meanings of the various process states are discussed
in the subsections following the table.

Table 6-1. Process States

STATUS Task
Attribute WFL Task State Mix Display Commands

NEVER USED None None

SCHEDULED Both of these: Both of these:

SCHEDULED S (Scheduled Mix

INUSE
Entries)

MX (Mix Entries)

ACTIVE Both of these: All of these:

ACTIVE A (Active Mix Entries) .

INUSE J (Job and Task Display)

MX (Mix Entries)

SUSPENDED Both of these: Both of these:

STOPPED W (Waiting Mix Entries)

.INUSE MX (Mix Entries)

FROZEN Both of these: LlBS (Library Task

ACTIVE
Entries)

INUSE

GOINGAWAYt None None

BADINITIATE ABORTED C (Completed Mix
Entries)

TERMINATED One or more of these: C (Completed Mix

COMPLETED
Entries)

COMPLETEDOK

COMPILEDOK

ABORTED

t GOINGAWAY is a write-only value. That is, assigning GOINGAWAY actually
changes the STATUS value to ACTIVE, with additional effects that are
described under "Thawing a Library" later in this section.

STACK STATE in Y
Display

None

One of these:

SCHEDULED

SELECTED

One of these:

ALIVE

HOLDING

READY

TO BE CONTINUED

WAITING ON AN EVENT

WAITING ON AN EVENT

FROZEN

None

None

None

6-2 8600 0494-000

Monitoring and Controlling Process Status

STATUS Task Attribute

The following are explanations of the STATUS task attribute values shown in Table 6-1.

• NEVERUSED

The task variable being interrogated has never been used in a process initiation
statement, or has been reinitialized since it was last used. Refer to "Preparing a
Task Variable for Reuse" later in this section.

• SCHEDULED

A process initiation statement has been executed, but the system is delaying
initiation of the process. For further information, refer to "Preventing Process
Scheduling" later in this section.

• ACTIVE

Process execution is proceeding normally. In the Y command output, this status is
expressed through any of several more specific values, which are described under "Y
(Status Interrogate) Stack States" later in this section.

• SUSPENDED

The process is waiting on an event that might require operator intervention. For
example, the process might be trying to open a tape file, and the operator might
need to mount the appropriate tape on a drive. Or the process might have executed

. an ACCEPT statement, which requires a response from an operator. For further
informatiori, refer to the discussion of responding to waiting entries in the A Series
System Operations Guide.

• FROZEN

The pr.ocess is a frozen library process. It might be a permanent or temporary
library. For information about library processes, refer to Section 18, "Using
Libraries. "

• GOINGAWAY

You can assign this value to a frozen library process to cause it to resume execution
as soon as possible. For details, refer to "Thawing a Library" later in this section.

• BADINITIATE

An unsuccessful attempt was made to initiate the process. Process initiation can fail,
for example, if the specified object code file is missing or if the object code file expects
different parameters than are passed by the initiator. Note that BADINITIATE is
only one of the terminations that can cause the WFL task state of ABORTED to
return a value of TRUE. See the following description of TERMINATED.

• TERMINATED

The process initiated successfully and later terminated. You cannot tell from
the STATUS value whether the process completed normally or whether some
circumstance caused the process to fail. For further information about process
terminations, refer to "WFL Task State Expression" later in this section and to
Section 10, "Determining Process History."

8600 0494-000 6-3

Monitoring and Controlling Process Status

WFL Task State Expression

6-4

The task state expression in WFL returns a Boolean value indicating whether a process
is in a specified state. For example, the following statement fragment takes a specified
action if t~e process with task variable Tl has completed execution.

IF Tl IS COMPLETED THEN •••

Some of the task states that can be queried correspond to single STATUS task attribute
values. Other task states correspond to two or more STATUS task attribute values.
Thus, at any given time, it is possible that more than one of the possible task state
expressions will return a value of TRUE. The following are values that can be used in a
WFL task state expression, and the conditions that cause them to evaluate to TRUE:

• SCHEDULED

The system is delaying initiation of the process. The STATUS task attribute value is
SCHEDULED.

• ACTIVE

The process is executing normally. The STATUS task attribute value is ACTIVE.

• STOPPED

The process is waiting on an event that might require operator action. The STATUS
task attribute value is SUSPENDED.

• INUSE
The process is in use; that is, it has been initiated but has not yet terminated. The
STATUS task attribute value is SCHEDULED, ACTIVE, or SUSPENDED.

• COMPLETED

The process terminated. The STATUS task attribute value is TERMINATED or
BADINITIATE.

• COMPLETED OK

The process completed execution normally, but if it was a compilation, it might
not have compiled the program successfully. The STATUS task attribute value is
TERMINATED and the HISTORYTYPE task attribute value is NORMALEOTV or
SYNTAXERRORV.

• COMPILED OK

The process completed execution normally. If the process was a compilation,
it compiled the program successfully. The STATUS task attribute value is
TERMINATED and the HISTORYTYPE task attribute value is NORMALEOTv.

• ABORTED

The process terminated abnormally, for example, because of a fault or because of
operator entry of a DS (Discontinue) system command. The STATUS task attribute
value is TERMINATED or BADINITIATE, and the HISTORYTYPE task attribute
value is DSEDV. .

8600 0494-000

Monitoring and Controlling Process Status

The COMPLETEDOK, COMPILED OK, and ABORTED values give you the ability
to determine whether a process completed successfully. For further information on
determining how and why a process terminated, refer to Section 10, "Determining
Process History."

Mix Display Commands

Several different system commands are available for displaying all the processes that are
in a particular state. The following are the system mix commands and the process states
they display:

• A (Active Mix Entries)

Displays processes that are running normally. The STATUS task attribute value is
ACTIVE.

• C (Completed Mix Entries)

Displays processes that have recently terminated. The STATUS task attribute value
is TERMINATED or BADINITIATE.

• J (Job and Task Display)

Displays all processes that are running normally. The processes are grouped into
process families in the display. The STATUS task attribute value is ACrIVE.

• LIBS (Library Task Entries)

Displays frozen library processes. The STATUS task attribute value is FROZEN.

• MX (Mix Entries)

Displays all in-use processes that are not frozen libraries. The STATUS task
attribute value is SCHEDULED, ACTIVE, or SUSPENDED.

• S (Scheduled Mix Entries)

Displays processes that the system is delaying initiating. The STATUS task
attribute value is SCHEDULED.

• W(Waiting Mix Entries)

Displays processes that are waiting on an event that might require operator
intervention. The STATUS task attribute value is SUSPENDED.

In addition to being available through individual system commands, these displays are
available as part of the ADM (Automatic Display Mode) output. For information about
using ADM to track processes, refer to the A Series System Operations Guide.

86000494-010 6-5

Monitoring and Controlling Process Status

V (Status I nterrogate) Stack States

6-6

The Y (Status Interrogate) system command returns several types of information about
a process, including the mix number, usercode, program name, and stack state. In the
following example, the stack state is WAITING ON AN EVENT:

Status of Task 3251\4441 AT 16:15:28
Program name: ,*OBJECT /ED ON OOCPK
Priority = 50
Origination: SA154/CANDE/3 (LSN 288)
MCS: SYSTEM/CANOE
Usercode: JASMITH
Chargecode: 6825
Stack State: Waiting on an event

The following are explanations of the STACK STATE values shown in Table 6-1:

• ALIVE
The process is currently bound to a processor. That is, it is actually being processed
rather than being in any type of waiting state. You can see this state displayed
only on a multiprocessor system, because on a single processor system, the
CONTROLLER independent runner has to take over the only processor to execute
the Y command.

• FROZEN

The process is a frozen library.

• HOLDING

The process is waiting on interrupts. This type of waiting is described in Section 16,
"U sing Events."

• READY

The process is in the ready queue and will proceed as soon as a processor is available.
It is not unusual for a process to be in this state, because each central processor on
the system can be executing only one process at a time, and the mix can contain
many processes. The priority of a process can affect the amount of time it spends in
the ready queue; refer to Section 7, "Controlling Processor Usage."

• SCHEDULED

The system is delaying initiation of the process for any of various reasons. For
information about process scheduling, refer to "Preventing Process Scheduling"
later in this section.

• SELECTED

The process is being initiated.

• TO BE CONTINUED

This value indicates a process that has initiated a synchronous task that has not yet
completed, or a process that has executed a CONTINUE statement and is waiting on
its coroutine.

86000494-010

Monitoring and Controlling Process Status

• WAITING ON AN EVENT

If no RSVP line appears in the Y command output, then this value means the process
is waiting for an I/O operation to be completed or for a particular event to be caused.
For a general discussion of events, refer to Section 16, "Using Events."

If an RSVP line appears in the Y command output, then the WAITING ON AN
EVENT value means that the process is waiting on an event that might require
operator intervention. The RSVP . line lists system commands that might be helpful
responses to the situation. For more information about responding to waiting
entries, refer to the A Series System Operations Guide.

Monitoring Changes in Process Status
A process can monitor the status of its offspring by waiting on its own
EXCEPTIONEVENT task attribute. This method works because, whenever the status
of a process changes, the system causes the EXCEPTIONEVENT of the parent of the
process.

If you design a process to wait on its own EXCEPTIONEVENT, it can resume execution
and check the status of its offspring each time the EXCEPTIONEVENT is caused. For .
example, to wait for a task to terminate, the parent process can execute the following
ALGOL statement:

WHILE T.STATUS GTR VALUE(TERMINATED) DO
WAITANDRESET(MYSELF.EXCEPTIONEVENT);

Note that a WAITANDRESET statement is used rather than a simple WAIT statement.
If a simple WAIT statement were used, then the WHILE loop would execute an infinite
number of times after the first time the EXCEPTIONEVENT was caused.

The most typical reason for using such WAIT statements is to prevent critical block exits
for ALGOL or COBOL74 programs that initiate asynchronous tasks. Critical block exits
are discussed in Section 2, "Understanding Interprocess Relationships."

8600 0494-000 6-7

Monitoring and Controlling Process Status

It is not necessary to take steps to prevent critical block exits in WFL. WFL
automatically waits at the end of each block if any processes initiated by statements in
the block are still in use. However, there can be other reasons for a WFL job to wait on
the termination of an asynchronous task. For example, suppose you have an application
consisting of three programs. The first two programs create files that are used as input
by the third program. The following WFL job runs the first two programs in parallel, and
waits for them to complete before initiating the third program:

100 ?BEGIN JOB;
110 TASK T1, T2, T3;
120 PROCESS RUN OBJECT/RUNEX [T1];
130 PROCESS RUN OBJECT/TADCOM [T2];
140 WHILE T1 ISNT COMPLETED OR T2 ISNT COMPLETEO DO
150 WAIT;
160 PROCESS RUN OBJECT/DIALUP [T3];
170 ?END JOB

Note that the statement at line 150 is simply WAIT, rather than WAIT ANDRE SET
(MYSELREXCEPTIONEVENT) as it would be in ALGOL. This difference arises
because WFL has no syntax for directly accessing the EXCEPTIONEVENT task
attribute, or events in general for that matter. However, the simple W AYr in WFL has
the effect of implicitly waiting on and resetting the EXCEPTIONEVENT.

WFL provides some other useful expressions for monitoring process status. You can
design a WFL job to wait for a task to terminate, to wait for the task to assume a
particular status, or to wait for any attribute of the task to assume a desired value.
For details, refer to the discussion of the WAIT statement in the A Series Work Flow
Language (WFL) Programming Reference Manual.

Controlling Process Status

6-8

You can accomplish some changes to process status through programmatic assignments
to the STATUS task attribute. Additionally, you can prevent many instances of process
scheduling or suspension through careful program design.

8600 0494-000

Monitoring and Controlling Process Status

Terminating a Process

You can interactively terminate a process by entering the DS (Discontinue) system
command. You can can design a program to terminate a process by assigning the
STATUS task attribute a value of TERMINATED. The following is a WFL program that
terminates a task if it becomes suspended:

100 ?BEGIN JOB ACCOUNTS/JOB;
110 JOBSUMMARY = SUPPRESSED;
120 CLASS = 2;
130 TASK T;
140 PROCESS RUN OBJECT/DAILY/ACCOUNTS [T];
150 WHILE NOT DONE DO
160 BEGIN
170 WAIT;
180 IF T IS STOPPED THEN
190 BEGIN
200 T(STATUS = TERMINATED);
210 MYSELF(JOBSUMMARY = UNCONDITIONAL);
220 END;

. 230 IF T IS COMPLETED THEN
240 DONE := TRUE;
250 END;
260 ?END JOB

The presumption behind this WFL program is that OBJECT/DAILY/ACCOUNTS
is a program that does not normally become suspended at any point in its run. If
this particular program becomes suspended, it means that something has gone
wrong and it is something that an operator cannot easily fix. Further, it is assumed
that job queue 2, which this job is initiated from, has a mix limit of 1. Thus, if
OBJECT/DAILY/ACCOUNTS becomes suspended, it is impossible for any more WFL
jobs to be initiated from that job queue until an operator notices the situation and
discontinues the process.

The WHILE statement at lines 150 to 250 is included to prevent this job from ever
uselessly blocking up the job queue. Within the WHILE statement, the WAIT statement
at line 170 causes the WFL job to wait until its own EXCEPTIONEVENT is caused.
The system automatically causes the job's EXCEPTIONEVENT when the STATUS
value of any of the job's offspring changes. When the status value of the offspring
changes, the statement at line 180 uses the task state expression to determine if
OBJECT/DAILY/ACCOUNTS is suspended; if so, then the statement at line 200 assigns
a STATUS of TERMINATED to discontinue OBJECT/DAILY/ACCOUNTS. The
statement at line 210 causes printing of the job summary. For information about job
summaries, refer to Section 10, "Determining Process History."

The statement at lines 230 to 240 causes the loop to be exited when
OBJECT/DAILY/ACCOUNTS terminates (whether it terminated normally or was
discontinued) .

8600 0494-000 6-9

Monitoring and Controlling Process Status

Thawing a Library

6-10

Thawing a library is the act of changing a permanent or control library into a temporary
library. A temporary library automatically resumes execution as soon as it has no more
users. By contrast, a permanent library remains frozen indefinitely, and a control library
remains frozen until it exits the control procedure. Thawing a library is thus a first
step toward removing a permanent or control library process from usage (for example,
because you want a newer version of the library program to be used). Thawing the
library is less drastic than discontinuing the library process with a DS (Discontinue)
system command or a STATUS assignment of TERMINATED.

You can design a program to thaw a library process by assigning either of two . values to
the STATUS task attribute: ACTIVE or GOINGAWAY. Table 6-2 summarizes the
differences in the effects of these two assignments.

Table 6-2. Effects of GOINGAWAY and ACTIVE Assignments

Effects GOINGAWAY Assignment ACTIVE Assignment

Time Execution Resumes When there are no more . When there are no more
users users

New Users of Shared Are linked to a new Are linked to the existing
Libraries invocation of the latest library process

version of the library object
code file

STATUS Task Attribute ACTIVE FROZEN

WFL Task State ACTIVE, INUSE ACTIVE,INUSE

Mix Commands A,J, MX L1BS

Y Stack State WAITING ON AN EVENT FROZEN

The key difference between GOINGAWAYand ACTIVE assignments is that the
GOINGAWAY assignment prevents any additional user processes from linking to
the library process. For libraries that are shared by many users, this can make a
big difference in how long the library process takes to resume execution. Hyou use
an assignment of ACTIVE instead, new processes can continue linking to the (newly
temporary) library, with the result that the library remains frozen indefinitely.

(

Note that neither the GOINGAWAYassignment nor the ACTIVE assignment actually
changes the STATUS task attribute to the requested value. After a GOINGAWAY
assignment, the STATUS value is ACTIVE. GOINGAWAY is therefore never returned
as a value when a process reads the STATUS task attribute. By contrast, after an
ACTIVE assignment, the STATUS remains FROZEN until there are no more users of
the library. Then the library STATUS changes to ACTIVE and the process resumes
execution.

You can thaw a library interactively with the THAW (Thaw Frozen Library) system
command. This command has the same effect as assigning a value of ACTIVE to the
STATUS task attribute.

8600 0494-000

Monitoring and Controlling Process Status

Suspending and Resuming Processes

You can interactively suspend execution of a process with the ST (Stop) system
command, and resume execution of the process with an OK (Reactivate) system
command. You can design a program to achieve the same result by assigning the
STATUS task attribute a value of SUSPENDED or ACTIVE. However, note that if
the process is suspended by the system, the OK command or ACTIVE assignment
frequently is not enough to resolve the cause of the suspension. In this case, the process
is suspended again by the system without progressing any further in its execution.

One reason to suspend a process programmatically is for testing. For example, you can
add a statement in a program that causes it to be suspended at a certain point where a
problem has been occurring. Then you can force a memory dump or program dump
through the DUMP (Dump Memory) system command, with the knowledge that the
dump will reflect the state of the process at a selected point in its execution.

Parallel processes can also use assignments of SUSPENDED or ACTIVE as a means of
coordinating their activities. However, A Series systems provide special variables called
events that are better suited to coordinating parallel processes. For details, refer to
Section 16, "Using Events."

Preparing a Task Variable for Reuse

As was stated earlier in this section, a task variable can be in use by only one process
at a time. However, it is possible to reuse a task variable so long as the first process
terminates before the task variable is used in another process initiation statement.
The side effects that can result from such reuse of task variables are discussed in the
A Series Task Attributes Programming Reference Manual.

Suffice it to say here that the side effects involve task attribute values that are retained
from one use of the task variable to the next. To restore all the task attributes of the
task variable to their default values, you can assign the STATUS task attribute avalue
of NEVER USED. In WFL, you also have the option of using an INITIALIZE statement,
which has the same effect as the STATUS assignment.

Preventing Process Scheduling

A process is said to be SCHEDULED when it has been submitted for initiation, but the
system is delaying initiation of the process. Scheduling can have any of several causes,
the most common of which is a lack of available memory on the system. If the system
estimates that a particular process will require more memory for efficient execution
than is currently available, the system places the process in a scheduled state until more
memory becomes available.

86000494-010 6-11

Monitoring and Controlling Process Status

There are two methods you can use to help prevent a process from being scheduled
because of a shortage of available memory:

• You can override the system's memory estimate for the process through assignments
to the CORE and STACKSIZE task attributes. For details, refer to Section 8,
"Controlling Process Memory Usage."

• You can assign the process with control program status by marking its object code
file with the MP <file title> + CONTROL form of the MP (Mark Program)
system command. For information about control program status, refer to Section 7,
"Controlling Processor Usage."

For further information about the causes of scheduling, refer to the process scheduling
discussion in the A Series System Administration Guide.

Preventing Process Suspension

Many cases where a process becomes suspended by the system can· be prevented with a
little planning. To be sure, there are situations that cannot be anticipated that might
make it necessary for the system to suspend a process. One such example is an extreme
shortage of available memory. However, a good many cases of process suspension result
from such causes as failed attempts to open files or ACCEPT statements that require
immediate input from the operator.

In many of these cases, it might be preferable to allow the process to become suspended.
The advantage to this is that the process appears in the W (Waiting Mix Entries) display
with a message explaining why it is suspended. This is desirable if the situation is one
that an operator can easily remedy. A common example of such a situation is one where
a process is attempting to open a tape file. When the process appears in the W display,
the operator is prompted to mount the appropriate tape.

However, if you are interested in automating operations at your site as much as possible,
then you might find the techniques discussed in the following subsections to be useful.
For further information about the file attributes mentioned in the following discussions,
refer to the A Series File Attributes Programming Reference Manual.

Checking File Residence

6-12

You can design a program to read the AVAILABLE or RESIDENT attributes of a file
before attempting to open the file. RESIDENT returns a value of TRUE or FALSE to
indicate whether the file is available. AVAILABLE returns a numeric value indicating
whether the file can be opened, and if not, why not. .

If the file is available, the program can execute an OPEN statement. If the file is not
available, the program can skip the OPEN statement and take whatever recovery actions
are deemed appropriate by the programmer.

8600 0494-010

Monitoring and Controlling Process Status

Using AUTO RESTORE for Disk Files

You can use the AUTORESTORE task attribute to request that the system
automatically attempt to restore any missing disk file requested by a process. Automatic
restoration can prevent the process from becoming suspended with a NO FILE
condition. Refer to the discussion of disk file usage in Section 9, "Controlling Process I/O
Usage."

Using a Serial Number for Tape Files

When a process opens a tape file, the process can become suspended even if the
requested tape is already mounted on an available tape drive. The suspension occurs if
the process does not give the system sufficient information to identify the particular tape
to search for the file. If the process becomes suspended, the operator can use system
commands such as IL (Ignore Label) or OU (Output Unit) to specify the correct tape
drive so process execution can resume.

Nothing you can do removes the need for someone to mount a tape containing the tape
file on a tape drive. However, you can set things up so that an operator does not have
to take any further action beyond mounting the tape and later removing it. You can
write the program to assign avalue to the SERIALNO attribute of the tape file. When
the process attempts to open the file, the system checks to see whether a tape with that
SERIALNO value is mounted on any of the available drives. If the tape is mounted,
then the system looks for the requested file on that tape, without ever suspending the
process.

SERIALNO is also available as an option in the WFL COpy statement. The following is
an example:

COpy (JASMITH)= FROM SYSPK(PACK) TO LABCON(TAPE,SERIALNO="LABIN");

This example creates a tape named LABCON with a SERIALNO value of "LABIN". The
SERIALNO value can include letters as well as digits. Any letters in the string must be
capitalized.

Sometimes you want the program to write output to a tape, but you do not really care
which tape, as long as it goes to a tape that is not otherwise in use. In this case, you
can leave the SERIALNO value empty and set the FILEUSE file attribute to OUT. If
the SERIALNUMBER operating system option is not set, then the system writes the
file to any scratch tape that is mounted and not in use. An operator can set or reset the
SERIALNUMBER option with the OP (Options) system command.

Using UNITNO and OMITTEDEOF for Unlabeled Tape Files

By default, any tapes created by an A Series system have ANSI -standard tape labels.
These tape labels store identification information for the tape. However, you might
have occasion at some time to use a tape on an A Series system that was created by
a different type of computer system. If the different computer system did not create
an ANSI -standard tape label, you must design your program to read the tape as an

86000494-010 6-13

Monitoring and Controlling Process Status

unlabeled tape. You can also use this technique to enable a program to read a tape
whose label has become corrupted.

When a process attempts to open an unlabeled tape, the process typically becomes
suspended until an operator enters a UL (Unlabeled) system command. This command
specifies the tape drive to use for the file. You can prevent the need for the operator to
enter this command. However, you must use a different technique than was previously
described for labeled tapes. The SERIALNO attribute has no meaning for unlabeled
tapes.

Instead, if you know the physical unit number of the drive where the correct tape will
be mounted, you can design the program to assign the physical unit number of that tape
drive to the UNITNO file attribute. A file open operation then opens any tape that
happens to be on the specified tape drive. This method should not be used unless you
can ensure that the correct tape will be mounted on the tape drive when the program
runs. Note also that access to unlabeled tapes and to the UNITNO file attribute might
be restricted on systems running InfoGuard security enhancement software at the 81 or
S2 level; refer to the A Series Security Administration Guide for details.

A process can also be suspended when it reaches the end of an unlabeled tape file. This
happens because, depending on the circumstances, a tape mark can indicate the end
of the file or simply the end of a reel. If the LABEL file attribute value is OMITTED,
the tape mark is interpreted to mean that the file continues on another tape reel. The
process becomes· suspended until the operator enters a UL command (to specify where
the next reel is located) or an FR (Final Reel) system command.

If you know in advance that the unlabeled tape file will be confined to a single reel, you
can prevent the process from suspending at the end of the file. To do this, you must
declare the file with a LABEL value of OMITTEDEOF. In this case, when the process
reads to the end of the file, the system returns an end-of-file condition on the read
operation. The process can check the result of the read operation and take appropriate
action. This method saves the operator the trouble of entering the FR command.

Using the AUTORM Option

6-14

A process can become suspended if it attempts to enter a file into the disk directory and
a file of the same· title aIreadyexists. The system displays a "DUP LmRARY" RSVP
message for the process. The process does not proceed any further until an operator
enters an RM (Remove) system command. The RM command causes the system
to remove the existing file. You can save the operator from having to enter an RM
command by setting the AUTORM option. AUTORM can be set for a process through
assignments to the OPTION task attribute, or for the whole system through the OP
(Options) system command. The AUTORM option causes the system to automatically
remove any old duplicate files that a process encounters. For further information about
disk directories and the AUTORM option, refer to "Entering a File in the Directory" in
Section 19, "Using Shared Files."

86000494-010

Monitoring and Controlling Process Status

Using the ORGUNIT Value for ODT Files

A process can become suspended when it executes a statement that opens an aDT file.
For information about how to prevent this process suspension from occurring, refer
to the discussion of aDT terminal communications in the Section 3, "Tasking from
Interactive Sources."

. Using Conditional ACCEPT Statements

A process can become suspended when it executes an ACCEPT statement to prompt
the operator for input. For information about how to prevent this suspension from
occurring, refer to the discussions of the conditional ACCEPT statement and the
ACCEPTEVENT task attribute in Section 3, "Tasking from Interactive Sources."

86000494-010 6-15

6-16 8600 0494-010

Section 7·
Controlling Processor Usage

You can control two aspects of the processor usage for a process: process priority and
total processor usage. In addition, you can monitor the processor usage of a particular
process to gain an understanding of the resource usage patterns of the process.

Controlling Process Priority
A Series systems are designed to efficiently execute large numbers of processes
simultaneously. However, each system incorporates a limited number of processors,
including central processors, I/O processors, and data link processors (DLPs). Each
system also has a finite amount of main memory. On a heavily used system, all the
processes in the mix are competing for the use of these system resources.

However, it may be that not all these processes are equally urgent from the user's point
of view. A Series systems provide the concept of priority to allow you to specify which
processes should receive preference in the competition for system resources.

The primary effect of process priority occurs in cases where more than one process is
ready to use a central processor. Each central processor executes only one process at a
time, but divides its time among all the processes on the system. The system maintains a
list, called the ready queue, of all processes that are waiting for a processor, arranged in
priority order.

A processor continues executing a particular process until one of three things happens:
the process reaches a natural stopping point (for example, because it is waiting for an
I/O to complete), a higher-priority process appears in the ready queue, or the process
exceeds its time slice and a process of equal priority is present in the ready queue. The
processor then retrieves the higher-priority process from the ready queue and begins
executing it.

The priority of a process is determined by several factors, only some of which can
be controlled by the user. For example, some system software processes have
a higher priority than can be assigned to an ordinary application process. For a·
complete overview of factors affecting process priority, refer to the A Series System
Administration Guide.

One aspect of priority that you can control, within certain limits, is the PRIORITY task
attribute value. The PRIORITY task attribute has a range of values from 0 to 99, with
the higher values indicating higher priority. The default value is 50. You can assign a
PRIORITY value to a process anytime before initiation, either through task equations
or assignments to a task variable. Once a process is initiated, any programmatic
assignments to the PRIORITY task attribute change the task attribute value without
affectiflg the actual priority at which the process executes. The new PRIORITY task
attribute value is returned when the task attribute is read, and displayed in the output
of various system commands.

86000494-010 7-1

Controlling Processor Usage

7-2

The only way to effectively change the priority of an in-use process is with the PR
(Priority) system command. This command changes the PRIORITY task attribute value
and also causes the system to enfor~e the new priority value.

One point to bear in mind about this attribute is that its effects are absolute rather than
proportional. That is to say, the system always gives the processor to the highest-priority
process that is ready to use it. A PRIORITY value of 51 gives as much advantage over a
PRIORITY of 50 as a PRIORITY value of 99 does. If the process with the PRIORITY
of 51 is very processor-intensive, it could prevent the process with PRIORITY 50 from
receiving any processor time at all. For this reason, you should be cautious about raising
the PRIORITY value of a processor-intensive process.

On the other hand, it is sometimes helpful and appropriate to raise the priority of
interactive processes. An interactive process is one that is largely driven by input from a
user at a terminal. Such a process typically spends most of its time waiting for the user
to enter commands. Once the user does enter a command, the user typically has to wait
for a response before being able to accomplish any further useful work. If the processor
usage of the process is small and occasional, you can improve response time by raising
the priority with relatively little impact on overall system performance.

For information about how to determine whether a process is processor-intensive, refer
to "Understanding Processor Usage Accounting" later in this section.

The system administrator can place some constraints on the values you are able to
assign to the PRIORITY task attribute. For example, the administrator can assign a
PRIORITY limit to ajob queue. If you write a WFLjob that is initiated from that job
queue, the job cannot request a PRIORITY value higher than the job queue PRIORITY
limit. Similarly, the system administrator can assign a value to the PRIORITY attribute
of your usercode. CANDE and MARC read the PRIORITY attribute of your usercode
when you log on. When you initiate a task from a CANDE or MARC session, CANDE
and MARC do not allow you to assign the PRIORITY task attribute a value higher than
your PRIORITY usercode attribute.

Aside from the PRIORITY task attribute, the major feature you can use to manipulate
process priority is the MP <file title> + CONTROL form of the MP (Mark Program)
system command. This option marks an object code file as a control program.
Thereafter, whenever that program is initiated, it runs in the same priority category that
message control systems (MCSs) do. This category gives higher priority than WFL jobs
or application programs have, but lower priority than invisible independent runners.

The system also places WFL jobs in a special priority category. WFL jobs receive higher
priority than all application programs, but lower priority than control programs, MCSs,
and invisible independent runners. .

The system uses the PRIORITY task attribute only when comparing processes that are
in the sarile priority class. Thus, a WFL job running with a PRIORITY value of 1 still has
a higher priority than an ordinary process with a PRIORITY of99.

86000494-010

Controlling Processor Usage

An additional effect of control program status is that it prevents the system from
scheduling a process (that is, delaying initiation of the process) when there is a shortage
of available memory. If you mark too many programs with control program status, the
result can be that system memory becomes overloaded, with a resulting adverse effect
on system performance. Therefore, you should use caution in marking programs with
control program status.

The system places WFL jobs in the high priority class because their only purpose in most
cases is to initiate tasks; the sooner the job initiates each task, the sooner the system can
evaluate the priority of each task on its own merits. However, it would not be possible to
rewrite a typical application in WFL to take advantage of its priority. WFL is specialized
for tasking functions and has no ability to read from or write to files.

Because the PRIORITY task attribute and control program assignments have a potential
to affect overall system performance, you should generally consult with the administrator
of your system before raising the priority of any particular process.

Limiting Processor Usage
You can use the MAXPROCTIME task attribute to set a limit on the amount of
processor time that a process can use. The accumulated processor time for a process is
stored in the ACCUMPROCTIME task attribute. When ACCUMPROCTIME reaches
a value equal to that of MAXPROCTIME, the system discontinues the process and
displays the error message EXC PROC TIME.

The main use of the MAXPROCTIME task attribute is to ensure that WFL jobs are
placed in the proper job queues. For example, suppose there is a high-priority job queue
that is intended for short jobs. The system administrator can use the PROCESSTIME
job queue attribute to provide default and limiting values for the MAXPROCTIME
task attribute of all WFL jobs that use the job queue. If you submit an extremely
processor-intensive job through that job queue, the system discontinues the job when
it exceeds the MAXPROCTIME value. This gives you an incentive to resubmit the job
through a different job queue. For an introduction to the subject of job queues, refer to
the discussion of WFL in Section 4, "Tasking from Programming Languages."

Understanding Processor Usage Accounting
Programs vary a lot in terms of their patterns of processor usage. Understanding the
processor usage of a program can help you to decide the priority at which it should run.
It can also help you to diagnose inefficiencies in p~ogram design or problems in overall
system performance.

The system divides the processor usage of a process into several categories, which can be
displayed through system commands, examined through task attributes, or read in the
system log.

86000494-010 7-3

Controlling Processor Usage

7-4

The system command that displays processor usage information is the TI (Times)
command. The folloWing is an example of the output:

5825 TI

TIMES FOR 5825
PROCESS = 00:00:37 LIMIT 0:01:20
10 = 00:00:01 LIMIT 0:02:40
READYQ = 00:00:56
INITPBIT = 00:00:06 3217 OPERATIONS
OTHERPBIT = 00:00:02 1521 OPERATIONS
ELAPSED = 00:11:40

In the TI command output, all the times are expressed in a format of
< hours> : < minutes> : < seconds>. The following are the meanings of these fields in
the TI command output:

• PROCESS

The accumulated processor usage of the process, with the exception of the
process time spent on presence-bit operations. (See the following descriptions of
INITPBIT and OTHERPBIT.) The LIMIT time, if displayed, corresponds to the
MAXPROCTIME- task attribute value.

• 10
The accumulated I/O usage for the process. The LIMIT time, if displayed,
corresponds to the MAXIOTIME task attribute value.

• READYQ

The accumulated ready queue time for the process. Ready queue time is the time
spent waiting for the processor to become available. If this value is excessive,
it indicates either that the processor is overloaded or that other higher priority
processes are dominating the processor.

• INITPBIT

The amount of processor time spent on initial presence-bit operations. These are
operations that create arrays, files, and code segments for this process. This value is
followed by a count of the number of presence-bit operations.

If the value of INITPBIT is high compared to the value of PROCESS, this can be a
symptom of poor program structure. For example, if a large local array is declared in
a procedure that is entered repeatedly, then much processor time is spent recreating
the array each time the procedure is entered, thus resulting in a high INITPBIT
value. You can prevent this problem by declaring the array globally to the procedure,
'or by declaring the array with an OWN clause (in ALGOL programs only).

86000494-010

Controlling Processor Usage

• OTHERPBIT

The amount of processor time spent on noninitial presence-bit operations for this
process. N oninitial presence bit operations read arrays and code segments back into
main memory after they have been overlaid. The value of OTHERPBIT can vary
widely for different runs of the same program, depending on the memory demands
that are made by other active processes. If this value is very high, it might indicate
that memory is overloaded and the system is thrashing .

• ELAPSED

The amount of real time that has passed since the process was initiated. This value
is stored in a different form in the ELAPSEDTIME task attribute.

The vBlue of ELAPSED can be greater than or less than the sum of the other values
listed in the TI display. The ELAPSED value can be greater because it includes
time spent waiting on events, and this waiting time is not displayed separately. The
ELAPSED value can be less because, in some cases, a process might be using the
processor and performing one or more I/O operations at the same time.

Most of the resource usage information that can be displayed for a process can also be
interrogated through task attributes.

The ACCUMPROCTIME task attribute returns the accumulated processor time.
The value does not include processor time spent on presence-bit operations. The
INITPBITTIME, INITPBITCOUNT, OTHERPBITTlME, and OTHERPBITCOUNT
task attributes return the times and counts for presence-bit operations. The
ACCUMIOTIME task attribute returns the accumulated I/O time for the process. The
ELAPSEDTIME task attribute returns the total elapsed time.

The values these task attributes return are expressed in units of 2.4 microseconds,
except if the attributes are read from WFL, which expresses the values in units of
seconds.

The system log (SUMLOG) records several categories of processor usage for each
process. This information includes the processor time, I/O time, ready queue time, and
p-bit times and counts. This information is stored in the Major Type 1, Minor Type
2 (EOJ) and Minor Type 4 (EOT) log entries. For a description of these log entry types,
refer to the A Series System Software Support Reference Manual.

86000494-010 7-5

7-6 86000494-010

Section 8
Controlling Process Memory Usage

Process execution takes place in a memory environment that is shared with all the other
processes in the mix. Understanding that environment can help you to improve process
performance and prevent a process from impairing overall system performance.

This section is aimed at programmers, and concentrates on the aspects of process
memory usage that can be affected by task attributes and object code file location.

Understanding Process Memory Usage
A process consists of several distinct components, some of which reside in main
memory and some of which can reside in virtual memory. The system uses presence-bit
operations to create or re-create some of the process components in main memory.

Main Memory and Virtual Memory

The effective memory capacity of an A Series system consists of the following two
components:

• Main memory

This is the total amount of memory that is physically present.

• Virtual memory

This is an additional amount of memory whose existence is simulated by temporarily
copying segments of main memory out to disk. The use of Virtual memory enables
the system to handle more processes than can fit into main memory at the same
time.

To facilitate memory management, the system classifies each of the segments of main
memory into one of the following three categories:

• Available memory

This is memory that is not assigned to an in-use process. The system is free to
allocate this memory as the need arises.

• Overlayable memory

This is memory that is assigned to in-use processes, but which can nevertheless·
be overwritten if necessary. For data segments, the system must copy the data to
a different location in main memory or to an overlay disk file before reusing the
memory segment. For code segments, the system can simply overwrite the code
segment with other code or data. The system can read the code segment back in
from the object code file the next time it is needed.

8600 0494-000 8-1

Controlling Process Memory Usage

• Save memory

Save memory consists of structures that, for performance reasons, must be kept in
main memory at all times. The system never copies these segments out to disk, nor
does it move them around in main memory except for stack stretches. (Refer to
"Preventing Stack Stretches" later in this section.)

When the processes in the mix require far more memory than exists as main memory,
the processor is forced to spend a lot of time performing overlays. When the time spent
performing overlays begins to significantly impair system performance, the situation is
called thrashing.

Process Components

8-2

Every running process includes the following basic structures in memory:

• Process information block (PIB)

This structure contains process control information visible only to the operating
system. The PIB also contains a reference to the TAB.

• Task attribute block (TAB)

This structure stores the task variable for the process and includes the values of all
task attributes. In addition to the TAB of the process, the system creates a separate
TAB for each task variable the process declares. Thus, reusing a task variable can
slightly reduce the memory usage of a process. For cautions related to task variable
reuse, refer to the A Series Task Attributes Programming Reference Manual.

• Process stack

This structure includes storage areas, or descriptors pointing to outside storage
areas, for all variables declared by the process. The top of the process stack also
serves as a working storage area that the processor can use when evaluating
expressions. For information about estimating and limiting process stack size, refer
to "Controlling Process Scheduling," "Preventing Stack Stretches," "Protecting
against Looping Processes," and "Restricting Save Memory Usage" later in this
section.

• Code segment dictionary

This structure includes descriptors pointing to the locations of

The code segments used by the process.

Constant data used by the process, such as value arrays and translate tables.

Sequence numbers for all the code segments, if the program was compiled with
the LINEINFO compiler options set. (For information about LINEINFO, refer
to Section 10, "Determining Process History.")

For further information about code segment dictionaries, refer to "Controlling Code
Segment Dictionary Sharing" later in this section.

8600 0494-000

Controlling Process Memory Usage

Presence~Bit Operations

When the processor constructs an array, a logical file, or a code segment for a process in
memory, this action is referred to as a presence-bit operation. An initial presence-bit
operation is one that creates an array or a code segment because the related procedure
has just been invoked. A noninitial presence-bit operation is one that copies an array or
a code segment back into main memory from disk.

The number of initial presence-bit operations performed by a process, and the processor
time they take, are relatively stable from one run of a program to the next (provided that
each run results in the same sequence of procedure entrances). However, the number of
noninitial presence-bit operations performed by a process depends to a large extent on
how much memory is being used by all the other processes in the mix. When memory is
crowded, more noninitial presence-bit operations are performed.

You can monitor the number of presence-bit operations for a process, and the processor
time spent on them, by using the TI (Times) system command, by interrogating task
attributes, or by reading system log entries. Refer to the discussion of processor usage
accounting in Section 7, "Controlling Processor Usage."

Controlling Code Segment Dictionary Sharing
The system generally causes processes to share the same code segment dictionary if the
processes are executions of the same program. This technique reduces total memory
usage and thus reduces the system overhead for memory management. The result is
that all the processes in the mix are able to run more quickly.

There are a few situations in which the system does not use the same code segment
dictionary for processes that are executing the same program. Understanding these
situations can help you to conserve memory and control process privileges.

To decide whether two processes are executions of the same program, the system
compares the object code file title for each process. Suppose you have one copy of
OBJECT/PROG on the family SYSPK, and another copy on a family called DOCPK.
In this case, the family part of the object code file title is different. The system
therefore regards these as two different programs. If people are using both programs
simultaneously, the system has to create two separate code segment dictionaries. You
can eliminate this duplication, and thus reduce system overhead, by placing a single
object code file in a central location where all the users have access to it.

86000494-010 8-3

Controlling Pro~ess Memory Usage

Even if two processes have the same object code file title, the system still assigns them
different code segment dictionaries in the following cases:

• If either of the processes is running in Test and Debug System (TADS) mode. A
process runs in this mode if you compile the program with the TADS compiler option
set and run the program with the TADS task attribute set. TADS mode gives
ALGOL, C, COBOL74, COBOL85, or FORTRAN77 processes access to the TADS
facility for debugging programs. You can prevent unnecessary duplication of code
segment dictionaries by using T ADS mode only for the rare cases when you are
actually doing debugging.

• If the object code file is overwritten. An object code file can be overwritten if, for
example, you recompile the program or use a COpy statement to replace it with a
different program having the same- title. If the object code file of a running process
is overwritten, the system retains the old object code file as a temporary file. The
running process continues to use its code segment dictionary and the old object code
file. However, any new processes that are initiated with the same object code file
title receive a code segment dictionary reflecting the new object code file. The main
point to bear, in mind is that updating or removing an object code file has no effect on
processes that are already running.

The MP (Mark Program) system command can be used to assign various options to
object code files. These options are described in Section 5, "Establishing Process
Identity and Privileges." Be aware that these options do not affect new instances of the
program if an old version of the code segment dictionary is lingering in memory. The
code segment dictionary remains in memory as long as any process is using it. Further,
for programs marked with the RP (Resident Program) system command, the code
segment dictionary remains in memory until the next system halt/load.

If you assign a new security status to a program, and the program is frequently used
or has resident program status, you might consider the following method of updating
the code segment dictionary. You can copy the object code file over itself with a COpy
statement such as the following:

COpy (JASMITH)OBJECT/PROG AS (JASMITH)OBJECT/PROG

Subsequent instances of the program will reflect the new privilege status.

Controlling Process Scheduling

8-4

A process is said to be scheduled when it has been submitted for initiation, but the
system is delaying initiation of the process. Scheduling can occur for any of a number
of reasons, most of which are not preventable by the programmer. For an explanation
of these reasons, refer to the discussion of process scheduling in the A Series System
Administration Guide.

One type of process scheduling that you can prevent, to some extent, is scheduling due to
a lack of available memory. The system performs this type of scheduling if it estimates
that a particular process requires more memory for efficient execution than is currently

86000494-010

Controlling Process Memory Usage

available. The system places the process in a scheduled state until more memory
becomes available.

The initial memory estimate for a process is created by the compiler and stored in the
object code file. The memory estimate is an estimate of the average amount of memory
that must be available for the process to run efficiently (that is, without excessive
overlays). This ideal amount of memory is referred to as the working set of the process.

Each time the object code file is executed, the system writes an updated memory
estimate into the object code file. The updated estimate is based on the average of
the existing estimate and the memory usage during the current run. The effect is to
gradually refine and improve the accuracy of the memory estimate each time the object
code file is run.

The memory estimate for a process consists of two separate statistics: the estimated
process stack size, and the estimated memory usage for data and code segments. You
can override the process stack size estimate through an assignment to the STACKSIZE
task attribute. You can override the data and code estimate through an assignment to
the CORE task attribute. By assigning large or small values to the STACKSIZE and
CORE attributes, you can make it more or less likely that the system will schedule a
process when it is submitted for initiation.

It is rarely necessary or desirable for you to make assignments to the STACKSIZE
and CORE task attributes. It is true, for example, that you can help ensure that a
process will not be scheduled by setting STACKSIZE and CORE to artificially low values.
However, doing so could cause a system to begin thrashing, with the result that system
performance . could dramatically worsen.

The following are situations in which it might make sense to assign STACKSIZE and
CORE values:

• When initiating a program that is newly compiled. The memory estimate in such an
object code file has not been refined through repeated use.

• When initiating a program that is stored on a read-oilly disk. Many types of disk
drives have a switch that enables an operator to put the disk drive in read-only
mode. If an object code file is stored on a read-only disk, the system is not able to
update the memory estimate in the object code file after each run.

• When initiating an program whose memory usage varies widely from one run to the
next. This can be the case if the memory usage depends on the type and quantity of
the data passed to the program for processing.

Even in these situations, there is no point in your assigning a CORE or STACKSIZE
value unless you have some information about what the working set of the program.
really is. You can get some general idea of the memory usage of a program by
running it and examining statistics with the LOGANAL YZER utility. You can use the
LOGANAL YZER MIX option to return log ~ntries for a particular process. In the Major
Type 2, Minor Types 4 and 5 (EOJ and EaT) log entries, you can find figures for the
average memory usage of a process.

8600 0494-000 8-5

Controlling Process Memory Usage

8-8

Processes" earlier in this section. This might also happen if the process uses large
numbers of arrays and files.

You can prevent a process from exceeding a planned level of save memory usage by
assigning a value to the SA VEMEMORYLIMIT task attribute. If the save memory
usage of the process exceeds the limit set by this attribute, the system discontinues the
process and displays the message "USER SAVE MEMORY LIMIT EXCEEDED".

If a process is discontinued with the "USER SAVE MEMORY LIMIT EXCEEDED"
error, you should check to see if it was running normally or looping. If it was running
normally, you can consider program design measures to reduce the save ·memory usage.
Alternatively, you can raise the SA VEMEMORYLIMIT value and plan to run the process
at a time when the system is not very busy.

The system administrator can place some limits on the SA VEMEMORYLIMIT
value your processes can have. For example, the system administrator can assign a
SA VEMEMORYLIMIT value to your usercode. This value becomes the maximum
SA VEMEMORYLIMIT value for all processes initiated with your usercode. If you
assign a different SA VEMEMORYLIMIT value to a process, the system uses the lower
of your SA VEMEMORYLIMIT assignment and the usercode SA VEMEMORYLIMIT
assignment.

You might also find that the system administrator has assigned a SA VEMEMORYLIMIT
value to ajob queue you use for your WFL jobs. If the SA VEMEMORYLIMIT
is assigned as ajob queue default, you can override it with a different
SA ~MEMORYLIMIT assignment in the job header of your WFL job. If the
SAVEMEMORYLIMIT is assigned as ajob-queue limit, your WFLjob is rejected from
the job queue if the job header includes a higher SA VEMEMORYLIMIT assignment.
For more information about job queues, refer to the discussion ofWFL in Section 4,
"Tasking from Programming Languages."

8600 0494-000

Section 9
Controlling Process I/O Usage

The I/O activity of a process is primarily determined by various I/O statements that
the process executes. These include statements for reading from, writing to, opening,
and closing files. For an overview of I/O features available in A Series programming
languages, refer to the A Series I/O Subsystem Programming Guide.

There are also a number of task attributes that affect various global aspects of process
I/O activity. For example, you can use task attributes to establish default 'locations for
files used by a process, or to specify defaults for handling printer output produced by a
process. This section introduces the functions of task attributes that affect process I/O
activity and some related system commands.

Establishing the, Default Usercode for Files
One of the effects of the USERCODE task attribute is to supply a default usercode for
all files used by a process. For example, suppose a process runs with a USERCODE
value of FERMAT. Suppose also that this process attempts to open a file with a TITLE
file attribute or'INPUT/DATA ON DBFAM". In this case '

• If the NEWFILE file attribute is TRUE, the system creates the file under usercode
FERMAT and changes the TITLE file attribute to "(FERMAT)INPUT/DATA ON
DBFAM".

• If the NEWFILE file attribute is FALSE, the system searches for the file first under
the title "(FERMAT)INPUT/DATA ON DBFAM". If no file of that title exists, the
system searches for the file under the title "*INPUT/DATA ON DBF AM".

A process can override the default behavior by assigning a usercode as part of the TITLE
file attribute before attempting to open the file. For example, a process could assign
TITLE the value (LUANN)INPUT/DATA ON DBFAM. In this case, the system searches
for the file only under usercode LUANN.

Modifying File Attributes
File attributes are entities that describe the properties of files on A Series systems.
For example, file attributes specify the title of the file and the physical device type on
which it resides (such as disk or tape). Programs can specify attributes for a file in the
file declaration. Programs can also add to or change file attributes with file attribute
assignment statements later in the program.

After you have written and compiled a program, you might later find that you would like
the program to start using a different set of file attributes than were originally specified
in the program. One method for doing this is to rewrite and recompile the program.

8600 0494-000 9-1

Controlling Process I/O Usage

9-2

This method can be time consuming for the programmer, and can make heavy use of
system resources such as processor time and memory.

Alternatively, you can modify the file attributes used by a program through constructs
called file equations. For example, suppose a program uses a file called IN and another
file called OUT. In a CANDE RUN command, you could use file equations to specify
different titles for these files in the RUN statement that initiates the program. The
following is an example: .

RUN REPORT1;FILE IN = (HKANE)INDATA, OUT = (HKANE)OUTDATA

File equations thus enable you to modify the file attributes used by a program without
having to rewrite or recompile the program. However, in order to use a file equation
you first have to know the internal name of the file. The internal name of the file is
determined by the value of the INTNAME file attribute. If the program does not specify
a value for INTNAME, then INTNAME defaults to the value of the file identifier used
for the file in the program. You can determine the internal name of a file by looking at
the file declaration in the program source file. Thus, either of the following ALGOL
declarations creates a file with an internal name of SOURCE:

FILE CUSTDATA(INTNAME = "SOURCE.");
FILE SOURCE;

The syntax for file equations in CANDE, MARC, and WFL is almost identical. For
example, to change the device kind of the file with the internal name of SOURCE, you
can append the following to a RUN statement submitted through any of these sources:

FILE SOURCE(KIND = REMOTE);

The flexibility provided by file equations can be so convenient that programmers
sometimes design a program with the intention that the user will use file equations. For
example, in the documentation for various A Series compilers and utilities, you can find
descriptions of the internal names of files used by these compilers and utilities. These
internal names are documented so that you can use them in file equations.

Note that the same file attribute can be assigned different values by file declarations, file
attribute assignment statements, and file equations. In these cases, the values assigned
through file equations override those specified in the file declaration. File equations
are in turn overridden by any conflicting file attribute assignment statements executed
by the program. A programmer can prevent file equations from having effect simply
by specifying file attributes through file attribute assignment statements rather than
through attribute assignments in the file declaration.

When you specify file equations for a process, the system stores the equations in the
FILECARDS task attribute of the process. For further information about FILECARDS,
refer to the A Series Task Attributes Programming Reference Manual.

One of the file attributes that it is frequently useful to change at run time is the
F AMIL YNAME file attribute. You can save yourself the trouble of including

8600 0494-000

Controlling Process I/O Usage

F AMIL YNAME equations for each file in the program by using the FAMILY task
attribute instead. Refer to "Specifying Family Substitution" later in this section. Also,
you can establish default values for the file attributes related to printing by using the
PRINTDEFAULTS task attribute, as described under "Programmatic Control Over
Printing" later in this section.

You might find occasionally that you initiated a process and forgot to specify the correct
file equations. The system suspends the process if both the following conditions are true:

• The process attempts a open operation with the WAIT option specified or with no
specific open option.

• The process is unable to open the specified file because of a missing or incorrect file
attribute value. '

You cannot use file equations to remedy this problem, because file equations must be
specified at process initiation. Instead, you can use the FA system command to supply
the needed fil~ attribute values. For example, suppose a process is suspended because
it tried to open a file SOURCE with KIND = TAPE, and the file is a disk file. The Y
system command output looks like this:

STATUS OF JOB 5692\5692 AT 16:34:45
CLASS = 2
PRIORITY = 50
ORIGINATION: SB154/CANDE/3 (LSN 320)
MCS: SYSTEM/CANDE
USERCODE: JASMITH
CHARGECODE: MANUFACTURING
STACK STATE: WAITING ON AN EVENT
PROGRAM ,NAME: WFL/TEST
RSVP: NO FILE SOURCE (MT) #1
REPLY: FA,UL,IL,OK,DS

Note that the name SOURCE, which appears on the RSVP line, is the file title rather
than the internal name. However, it does not matter if you do not know the internal
name in this case. When you specify file attribute assignments in an FA command, the
system automatically applies the assignments to the file the process is trying to open.
The following FA command enables the process to open the file and resume running
normally:

5692 FA KIND = DISK

For detailed descriptions of all the file attributes available on A Series systems, refer to
the A Series File Attributes Programming Reference Manual.

Controlling Disk File Usage
You can use task attributes to take advantage of some of the unique features of A Series
'disk storage, including the concept of disk families, disk directories, and the disk
resource control system.

8600 0494-000 9-3

Controlling Process I/O Usage

Specifying Family Substitution

9-4

\

Disk families are groups of disk units that are labeled with a common name and treated
as a logical unit. Disk families are defined through system configuration and system
commands. Once a family has been defined, a program can use the F AMIL YNAME file
attribute to specify that a file is located on that family.

It is quite often the case that all the input and output files used by a process are located
on one, or possibly two, disk families. Now, suppose that you include F AMIL YNAME file
attribute assignments in the program for each file used by the program. The system
administrator might later decide to change the name of a disk family, or might ask you to
place your files on a different family. Further, you might need to run your program on
a different host system, where no family of the original name exists. For any of these
reasons, it might become desirable for the program to look for its files on a different
family than is specified in the program code.

The simplest way to make a process use a different family is by assigning the FAMILY
task attribute. This task attribute specifies a target family and one or two substitute
families to be searched for files. For example, suppose a process expects to find its files
on the family SYSPK. This is considered the target family. To make the process look for
its files on the family PARTS instead, you could use the assignment "FAMILY SYSPK =
PARTS ONLY".

Note that this FAMILY value affects only files with a F AMIL YNAME value of SYSPK.
For example, if the file has a FAMILYNAME ofDBFAM, then the process still looks for
the file on DBF AM.

Note also that only one FAMILY value can be in effect at a time. For example, suppose
the existing FAMILY value of a process is "FAMILY SYSPK = P ARTS ONLY". In
this case, an assignment such as "FAMILY DBF AM = PACK ONLY" disables family
substitution for the SYSPK family and enables substitution for the DBF AM family.

If a program does not specify a F AMIL YNAME for a disk file, the system searches
for the file on the family named DISK If you want the users of a program to specify
a FAMILY value, you can leave the F AMIL YNAME unspecified for all the files. The
user can override the default F AMIL YNAME of DISK with a FAMILY task attribute
assignment such as "FAMILY DISK = DBF AM ONLY".

Sometimes it is useful to specify two substitute families in the FAMILY value. For
example, you might have a WFL job that runs utilities stored on the family named
DBF AM, which in turn use data files stored on the family named SYSPK In this case,
you can use a FAMILY statement like the one in the following WFL job:

?BEGIN JOB;
FAMILY DISK = DBFAM OTHERWISE SYSPK;

RUN OBJECT/DAILY/RUN;
RUN OBJECT/REPORT/GENERATOR;
?END JOB

Because the FAMILY assignment is in the job header, the system searches for
OBJECT/DAILY/RUN and OBJECT/REPORT/GENERATOR on DBFAM family and

8600 0494-000

Controlling Process I/O· Usage

then on SYSPK family. The FAMILY task attribute value is inherited by both tasks,
which search for their data files on DBF AM and SYSPK families.

When a family statement specifies two sUbstitute families, the first is referred to as
the primary family and the second as the alternate family. In the previous example,
DBF AM is the primary family and SYSPK is the alternate family.

When a process attempts to create a new file on the target family, the system creates
the file on the primary family instead. When a process attempts to open or execute an
existing file on the target family, the process searches for the file first on the primary
family and then on the alternate family. If the TITLE file attribute of the existing file
does not specify a usercode, the system searches for the file in the following locations, in
the order shown:

1. On the primary family, under the usercode of the process

2. On the primary family, as a nonusercoded file

3. On the alternate family, under the usercode of the process

4. On the alternate family, as a nonusercoded file

If the TITLE attribute of a file does not specify a usercode, and the NEWFILE file
attribute is TRUE, the system creates the file on the primary family under the usercode
of the process.

Another method for overriding the F AMIL YNAME file attribute is through file
equations, as described under "Modifying File Attributes" earlier in this section. The
following are two advantages to usiIig FAMILY instead of file equations for this purpose:

• A single FAMILY assignment affects all the files in the program that have the
specified target F AMIL YNAME. Using file equations, you must specify each file
individually.

• The FAMILY assignment overrides the target FAMILYNAME wherever it is
mentioned in the program. By contrast, file equations are applied when a file is
first declared. The program can later use file attribute assignment statements to
override the values supplied through file equations.

Preventing File Duplications

The system does not allow two permanent disk files with the same title to exist on the
same disk family. In order to handle attempts to duplicate disk file titles, most system
administrators set the system option AUTORM. If a process attempts to enter a file
in the disk directory for a family, but a file with the same name already exists in that
family's disk directory, then the AUTORM option causes the existing file to be removed.
For further information, refer to the discussion of preventing process suspension in
Section 6, "Monitoring and Controlling. Process Status."

8600 0494-000 9-5

Controlling Process I/O Usage

Automatically Restoring Missing Disk Files

If your site uses the archiving subsystem to perform system backups, you can use the
AUTORESTORE task attribute to reduce the likelihood that a process will be suspended
for attempting to open a nonresident disk file.

If a process with an AUTO RESTORE value of TRUE attempts to open a disk file, and
the disk file is not present on the requested family, the system checks to see if there is an
archive record specifying the location of a backup copy of the file. The system issues a
request for an operator to mount the necessary tape. When the tape is mounted, the
system copies the file back onto disk. At this point, the process that was attempting to
use the tape resumes execution.

If the system is unable to restore the file for any reason, the process becomes suspended
and appears in the W (Waiting Entries) system command display with a "NO FILE"
RSVP message.

For an overview of the system archiving and AUTO RESTORE features, refer to the
A Series System Administration Guide.

Limiting Disk Usage

9-6

The system administrator can use the disk resource control (DRC) system to limit
the disk usage of each user. For each usercode, the administrator can establish the
maximum amount of space the user can use on each family. The limits are applied in a
somewhat different manner for permanent and temporary disk files.

For permanent disk files, the limits imposed by the system administrator apply to the
total of all the user's files on a given family. Any process that attempts to increase the
total file usage beyond the limit receives an I/O error. For example, suppose the system
administrator has established a limit of 2 megabytes on the disk usage for usercode
CHAN on DBF AM family. Suppose there are already 1999999 bytes of permanent
files under CHAN usercode on DBF AM, and a process attempts a write operation
that requires another area to be allocated for one of these files. In this case, the write
operation fails.

For temporary disk files, the limits imposed by the system administrator apply to
individual processes running under the specified usercode. The administrator specifies
the limit by assigning a TEMPFILELIMIT attribute to the usercode. This in turn sets
a limit on the value that can be stored by the TEMPFILELIMIT task attribute of
processes running under the usercode. If a process attempts to increase its temporary
file usage beyond the number of megabytes specified by TEMPFILELIMIT, the process
receives an I/O error.

For example, if the TEMPFILELIMIT for usercode CHAN is 3 megabytes, there can
be two different processes running with CHAN usercode that each use 2 megabytes
for temporary files. The total temporary file usage is thus 4 megabytes. This is not a
violation of the TEMPFILELIMIT because the limit is enforced on a process-by-process
basis.

8600 0494-000

'Controlling Process I/O Usage

Note also that, unlike the permanent disk file limits, the TEMPFILELIMIT cannot be
linked to a particular disk family. The process might allocate its temporary files on
any family. For example, if the TEMPFILELIMIT is 3 megabytes, and the process has
allocated 2 megabytes of temporary files on DBF AM, the process can allocate no more
than 1 megabyte on SYSPK

,At any given time, the TEMPFILEMBYTES task attribute records the total number of
disk megabytes in use by the process for temporary files. The process can interrogate
this task attribute to determine the process is nearing the TEMPFILELIMIT value.
Alternatively, you can design the process to include I/O error handling that enables the
process to recover from temporary file limit errors.

For information about permanent and temporary disk files, and about I/O error handling,
refer to the A Series I/O Subsystem Programming Guide. For more information about
the DRC system, refer to the A Series Disk Subsystem Administration and Operations
Guide.

Controlling Printing
One aspect of process control is the ability to direct the printer output generated by a
task. A process can control the printer output of an offspring through the use of relevant
task attributes, such as PRINTDEFAULTS and FILECARDS.

The following subsections briefly introduce the printing control features of A Series
systems and the role that task attributes play in printing control. The statements
made about printer output in these subsections also apply to punch output, unless
otherwise stated. For complete details about controlling printer and punch output,
refer to the A Series Print System (PrintS/ReprintS) Administration, Operations, and
Programming Guide.

For information about printing job summaries, refer to Section 10, "Determining Process
History."

Default Handling of Printer Output

The system handles printer output in certain typical ways if operators, programmers,
and users do not use printing-related statements to request different treatment. The
following subsections describe the typical handling of printer and punch output.

Storing Printer Backup Files Temporarily

The system temporarily stores the printer backup files created by a process on a backup
medium before printing them.

A process can use the BACKUPKIND file attribute to specify the kind of medium on
which backup files are to be created. If the BACKUPKIND is DISK or PACK, the
backup file is created on the family with that name and is automatically printed later.

8600 0494-000 9-7

Controlling Process I/O Usage

If the BACKUPKIND value is TAPE, TAPEPE, TAPE7, or TAPE9, then the process is
suspended and displays an RSVP message asking the operator to mount a tape. When
the tape is mounted, the backup file is created on the tape. The system does not print
the backup file automatically. However, you can later use SYSTEM/BACKUP or a WFL
PRINT command to cause the file to be printed.

If the BACKUPKIND value is DONTCARE, then the LPBDONLY operating system
option and the BACKUP option of the OPTION task attribute determine how the
backup file is handled. If either or both of these options are set, the backup file is
created on the family DISK. If both of these options are reset, the backup file is routed
directly to a printer. If no printer is available, the process is suspended until a printer
becomes available. The operator can use the OP (Options) system command to set or

r reset the LPBDONLY option.

The operator can use the SB (Substitute Backup) system command to specify a
substitute backup medium for each possible BACKUPKIND value. The SB setting can
convert any BACKUPKIND value to any other BACKUPKIND value. For example, SB
can specify that all files with a BACKUPKIND of DISK be created on PACK instead.
Note that if the LPBDONLY operating system option is set, SB substitutions for DISK
also affect any backup files that have a BACKUPKIND of DONTCARE.

The SB command can also convert any BACKUPKIND value to DLBACKUP. This value
cannot be specified directly by the BACKUP KIND file attribute; only the SB setting can
cause this value to be applied to a backup file. The DLBACKUP value causes the backup
file to be created on the family specified by the DL BACKUP ON < family name> form
of the DL (Disk Location) system command.

Titling of Printer Backup Files

9-8

If no title is specified by the process that created a backup file, the system automatically
assigns the backup file a title of the following form:

*BD/000<mix number>/ •••• /<file number><internal name> ON <backup family>

In this title, the *BD node indicates that this is a printer backup file. The prefix for
punch backup files is *BP. On a system running InfoGuard security software with the
USERCODEDBACKUP option set to TRUE, the backup file titles are prefixed with the
usercode of the process, rather than an asterisk (*).

The first node of the title is followed by one or more nodes that store mix numbers. The
first of of these nodes contains the mix number of the job or the session. Other mix
number nodes, if there are any, contain the mix numbers for other ancestors of the
process, in order, from eldest to youngest. The last of the mix number nodes contains
the mix number of the process itself. If there is only one mix number node, the backup
file was created directly by ajob or session. Each mix number node begins with three
or four zeros: three zeros if the mix number is 4 digits long, and four zeros if the mix
number is 3 digits long.

The last node of the file name stores a file number and an internal name. The internal
name is the value of the INTNAME file attribute, which can be assigned by the process.

8600 6494-000

Controlling Process I/O Usage

IfINTNAME is not assigned, its value defaults to the file identifier used in the file
declaration.

The file number is a 3-digit number that indicates the chronological order of this backup
file compared to other backup files produced by the same process. For example, suppose
a process declares a backup file with an INTNAME of A and another with an INTNAME
of B. If the process opens and closes A three times, the system creates multiple backup
files whose titles end with OOOA, OOlA, and 002A. If the process then opens B, the
system creates a backup file whose title ends with 003B.

The backup family is the family determined by the rules discussed under "Storing
Printer Backup Files Temporarily" earlier in this section.

Note that the backup file title can be affected by the task attributes discussed under
"Other Print-Related Task Attributes" later in this section.

Submitting Print Requests

When ajob terminates, the system groups the backup files produced by the job and its
tasks into print requests. These print requests are groups of all the backup files that
can be printed on the same device. The system then queues all the print requests for
printing. In this context, a session. is treated like ajob, and backup files produced by
tasks of the session are queued for printing when you end the session.

For WFL jobs submitted through'a MARC or CANDE WFL command, the backup files
are associated with the session and are queued for printing when the session ends.
However, for WFL jobs submitted through a MARC or CANDE START command,
the backup files are associated with the job and are queued for printing when the job
terminates.

Selecting Print Requests

When one of the default printers becomes available, the system chooses one of the
queued print requests to be the next print request printed. By default, short print
requests are chosen before longer print requests. However, if the BACKUPBYJOBNR
operating system option is set, then backup files are printed in order according to job
number. The operator can set or r.eset this system option by using the OP (Options)
system command.

Normally, the system removes any backup file from disk once the backup files has
been printed. However, the system does not delete the backup file in the following
circumstances:

• The SA VEBACKUPFILE file attribute is assigned the value TRUE.

• The LOCKEDFILE file attribute is assigned the value TRUE.

• The file resides on a CD-ROM disk.

• The file resides on a disk that is write-protected.

86000494-010 9-9

I
I
I
I

Controlling Process I/O Usage

Programmatic Control OverPrinting

9-10

A program can control the handling of printer output by specifying print attributes and
print modifiers. Using these attributes and modifiers, the program can control such
issues as

• The location and the device kind of the backup file

• The printer used

• The time the print request is considered for printing

• The number of copies that are printed

• The portions of the backup file to be printed

• The formatting and translation of printed output

The final values ofthe.print attributes and print modifiers for a backup file are the
result of several different factors, most of which are controlled by a programmer. To
begin with, each print attribute and modifier has an ultimate default value that is used
if no other factor affects the value. The ultimate defaults can be overridden by process
defaults. The process defaults are established by the PRINTDEF AULTS task attribute.
The PRINTDEFAULTS value consists of a list of print attributes and modifiers and their
associated values. The system applies these values to all backup files produced by the
process, unless the values are overridden for particular backup files.

The PRINTDEFAULTS value is itself the outcome of several layers of possible
assignments. These sources of these assignments include the PRINTDEFAULTS
usercode attribute in the USERDATAFILE, the PRINTDEFAULTS attribute ofa
session, inheritance from a parent process, assignments to the object code file, run-time
task equations, and assignments to an active process.

You can override the process defaults for particular backup files by assigning print
attributes to the backup file. Print attributes is the name given to file attributes that are
related to printing, and they are assigned in the same way as any other file attribute.
Using print attributes, a process can cause each backup file to be handled differently.

Another option for printing files is to use the WFL PRINT statement. You can enter
this statement in WFL jobs, in MARC or CANDE sessions, or at an DDT. The PRINT
statement is used mainly to print permanent backup files.that were created on an earlier
occasion. The backup files remain on disk when printing is completed, so they can be
reused later.

The PRINT statement can assign print attributes and modifiers for any or all of the
backup files printed. These assignments override all previous assignments for the
backup files.

A process can affect the print handling for another process by making assignments to the
PRINTDEFAULTS task attribute of the process. Where more specific control is needed,
you can use the FILECARDS task attribute to specify print attributes for each backup
file.

86000494-010

Controlling Process I/O Usage

However, the PRINTDEFAULTS and FILECARDS values that are assigned externally
can be overridden internally. A process can assign a different value to its own
PRINTDEF AULTS task attribute after initiation. Also, file attribute assignments made
by the process outside the file declaration override any conflicting assignments made by
way of the FILECARDS task attribute.

Other Print-Related Task Attributes

Aside from PRINTDEFAULTS and FILE CARDS , the following task attributes are
related to printing: BACKUP FAMILY, BDNAME, DESTNAME, DESTSTATION, and
OPTION (BACKUP, BDBASE, and NOSUMMARY options only). However, these task
attributes were implemented before the current Print System. You can now use various
print attributes to achieve effects similar to the effects of most of these task attributes.
Print attributes are the preferred method for achieving such print control.

86000494-010 9-10A

Controlling Process I/O Usage

9-108 8600 0494-010

Controlling Process I/O Usage

The BDNAME task attribute, if assigned, prevents a backup file from being
automatically printed; instead, the file is saved on disk. In addition, BDNAME causes
the backup file to be stored under the usercode of the process. The BDNAME value
replaces *BD as the beginning of the file name. However, the remainder of the file name
follows the standard backup-file naming conventions.

As we have seen, BDNAME has several effects. You can achieve some of the same
effects through the use of several print attributes. You can prevent automatic printing
by setting the PRINTDISPOSITION attribute to DONTPRINT. You can assign a file
name by setting USERBACKUPNAME to TRUE and assigning the desired name to
FILENAME. The following example shows what these assignments look like in WFL:

FILE OUT (PRINTDISPOSITION=DONTPRINT, USERBACKUPNAME=TRUE,
FILENAME= <file name»

An advantage to using print attributes instead of BDNAME is that the print attributes
give you complete control over the backup file name, whereas BDNAME only affects
the prefix. On the other hand, this method is admittedly somewhat more complex
than using BDNAME. A single BDNAME assignment affects all backup files used by a
process, whereas when print attributes are used, separate FILENAME assignments
must be made for each backup file. For example, if a process creates multiple backup
files by opening and closing the same logical file repeatedly, then the FILENAME value
should be changed before each file open operation; otherwise, each time the file is
opened, the previous backup file with the same FILENAME is removed.

If BDNAME is assigned a non-null value, the backup file is saved and not printed,
regardless of the PRINTDISPOSITION and SA VEBACKUPFILE values.

If BDNAME has a non-null value and USERBACKUPNAME is FALSE, then the
FILENAME value is ignored. However, if both BDNAME and USERBACKUPNAME
are TRUE, then the FILENAME value is used as the file title. If FILENAME was not
assigned, then the INTNAME file attribute value is used as the title. If INTNAME was
not assigned, then the file identifier is used as the title.

You can use the BACKUPF AMIL Y task attribute to specify the family where backup
files produced by a process are to be stored. Only a WFL job or a message control
system (MeS) can assign this task attribute. You can also assign the family for a
backup file by using the F AMIL YNAME print attribute. If there is a conflict between
F AMILYNAME and BACKUPF AMILY, the F AMILYNAME value takes precedence over
the BACKUPF AMILY value.

The DESTNAME task attribute specifies that output is to be printed at a particular
station where a remote printer is attached. The DESTSTATION task attribute has the
same effect as DESTNAME, but specifies the station by number instead of name. You
can also specify a destination station by using the DESTINATION print attribute. If
there is a conflict, the DESTINATION value takes precedence over the DESTNAME or
DESTSTATION value.

You can use the BDBASE option of the OPTION task attribute to cause the task to
assume some of the characteristics ofajob. One of the effects of this option is to
cause task backup files to be submitted for printing when the task termiriates. If

8600 0494-000 9-11

Controlling Process I/O Usage

BDBASE is not set, the backup files are not submitted for printing until the task's job
terminates. Another method of controlling the timing of print requests is to use the
PRINTDISPOSITION print attribute. Assigning PRINTDISPOSITION a value of EOT
has the same effect on printing as setting the BDBASE option.

If you set BDBASE, then the PRINTDISPOSITION value is treated as it would be for a
job. PRINTDISPOSITION values ofEOT and EOJ are synonyms in this case, and both'
cause backup files to be printed when the task terminates. PRINTDISPOSITION values
of CLOSE, DIRECT, and DONTPRINT have their usual effect, regardless of whether
BDBASE is set.

The BACKUP option of the OPTION task attribute is discussed earlier in this section
under "Storing Printer Backup Files Temporarily." The NOSUMMARY option of the
OPTION task attribute is discussed under "Controlling Job Summary Printing" in the
"Determining Process History" section. '

Controlling Data Communications and Messages
You can use task attributes to help control the handling of remote files, to suppress
unwanted messages, or to specify the language in which messages are to be displayed.

In addition to the topics discussed here, you can find helpful information in the
discussions of CANDE, MARC, and ODT terminal communications in Section 3, "Tasking
from Interactive Sources."

Controlling Message Tanking

9~12

Processes can communicate with terminals by way of remote files. Tanking is a method
the system can use to temporarily store messages that a process writes to a remote file.
You can use the TANKING task attribute to specify the default tanking mode for all
remote files used by a process. The effects of this task attribute vary, depending on
whether or not the terminal that the process writes to is controlled by COMS.

When a process writes a message to a remote file, the system inserts the message in an
output queue. The system transfers messages from the output queue to the remote
device as fast as the remote device is able to accept them. If the process writes messages
to the remote file faster than the remote device can receive them, then the output queue
can become full. If the output queue is full, and the process writes another message to
the remote file, then the system can respond by tanking the output. Tanked output is
stored in a file called the tank file on disk. The system retrieves messages from the tank.
file and places them in the output queue when space becomes available.

If the output queue is full and tanking is not enabled for the remote file, and the process
attempts to write to the remote file, then the process must wait for room to become
available in the output queue before the write operation can complete. The result can be
a delay in the execution of the process. However, the process does not actually become
suspended and does not appear in the W (Waiting Mix Entries) system command display.

The tanking mode for a particular remote file is determined primarily by the file
attribute TANKING. To prevent tanking from occurring, you can assign TANKING

8600 0494-000

Controlling Process I/O Usage

a value of NONE. To enable tanking, you can assign TANKING a value of SYNC. To
enable a process to close the remote file and continue execution while tanked output
still exists, you can assign TANKING a value of ASYNC. When ASYNC is used and the
process closes the remote file, the system continues to transfer messages from the tank
file to the output queue until the tank file is empty. For details about the TANKING file
attribute, refer to the A Series File Attributes Programming Reference Manual.

The default value of the TANKING file attribute is UNSPECIFIED. If the file attribute
has this value, then tanking is determined by the TANKING task attribute and the
MCS. The TANKING task attribute has the same possible range of values as the
TANKING file attribute. Thus, setting the TANKING task attribute to NONE, SYNC,
or ASYNC causes these values to be applied to all remote files whose TANKING file
attribute is UNSPECIFIED.

If the TANKING file attribute and the TANKING task attribute are both
UNSPECIFIED, the MCS controlling the station can set the tanking mode for the
remote file. The MCS can do this by way of a parameter to the Station Assignment
to File DCWRITE. The DCWRITE statement is described in the A Series DCALGOL
Programming Reference Manual.

For remote files that communicate with terminals controlled by the CANDE MCS,
an operator can use the ?T ANKING network control command to specify the default
tanking mode. The ?TANKING command can specify default values of UNSPECIFIED,
NONE, SYNC, or ASYNC.

For remote files that communicate with terminals controlled by COMS, the effects of the
TANKING file and task attributes vary depending on the type of program involved.
Three types of application programs can run under COMS: direct window programs,
remote-file programs, and MCS window progr~.

Direct window programs communicate with terminals through special COMS structures
rather than through remote files. Consequently, the TANKING file attribute and task
attribute have no meaning for these programs.

Remote-file programs ~e programs that communicate through declared or dynamic
remote-file windows. Declared remote-file windows are windows that appear in the
COMS configuration file and have particular programs associated with them. Dynamic
remote-file windows are created by COMS at run time when a program initiated from a
MARC session opens a remote file.

For remote-file programs with a TANKING value of NONE, the system does not perform
tanking for the remote file. If the TANKING value is UNSPECIFIED, SYNC, .or
ASYNC, the system performs tanking as if the TANKING value were ASYNC.

Unisys recommends that you enable tanking for a remote-file program unless the
program services only a single terminal. If a remote-file program services multiple
terminals and uses a TANKING value of NONE, the program can go into a waiting state
when writing output to a terminal. While the program is in a waiting state, it is unable
to service input from other terminals. On the other hand, if a remote-file program
services a single terminal, it can be reasonable for the program to wait for all output to
be displayed before accepting any further input.

8600 0494-000 9-13

Controlling Process 1/0 Usage

An MCS window program is a program that you initiate from a COMS window devoted
to a subsidiary MCS. For example~ any programs you initiate by entering a RUN
command in a CANDE window are considered MCS window programs. For such
programs, the system supports the full range of TANKING file attribute and task
attribute values: NONE, SYNC, ASYNC, and UNSPECIFIED. The subsidiary MCS,
such as CANDE, can specify a tanking mode if the TANKING file and task attribute are
both UNSPECIFIED.

In addition to the system-level tanking that has been described up to this point,
COMS-Ievel tanking is provided for the programs that run in a COMS environment.
COMS-Ievel tanking affects direct window programs, remote-file programs, and MCS
window programs. COMS places output messages in the COMS tank file if the messages
are being written faster than the station can receive them, or if the messages are sent to
a window dialogue that is suspended.

By default, only messages generated for the user's current window dialogue are
displayed at the terminal, and all other window dialogues are considered suspended. The
user can resume another dialogue by using an ON command to transfer to the dialogue,
or by entering a RESUME command that specifies the dialogue. When the window
dialogue is resumed, COMS retrieves tanked messages and sends them to the station.

COMS-Ievel tanking is a necessary feature in the COMS windowing environment and is
performed regardless of the value of the TANKING file and task attributes.

Suppressing Unwanted Messages

9-14

Although system messages are intended to be helpful, there can be situations where you
might find it more convenient to suppress the display of certain messages.

Deimplementation warning messages are a good example of this principle. The system
issues a deimplementation warning message for a process when the process uses a
feature that has been scheduled for future deimplementation. These warning messages
can be very valuable because they help you to identify programs that need to be modified
before you can migrate your system to a new Mark release.

However, the system displays these deimplementation warnings each time the program
is run. If you run the program frequently, you may see the warning messages more often
than you care to be reminded of the pending deimplementation. You can suppress the
messages by using the SUPPRESSW ARNING task attribute. This attribute enables
you to specify a list of warning message numbers or number ranges, as in the following
example:

RUN OBJECT /PROG;S~PPRESSWARNING = 111,4 ,8-HP' ;

You can learn the identifying number for a message in either of two ways. First, you can
note the warning number when it appears in the message itself. For example, after
seeing the following message, you might assign SUPPRESSW ARNING a value of "13".

WARNING 13: DISK FILE HEADER CHANGES. SEE 3.7 MCP O-NOTE 6638

86000494-000

Controlling Process I/O Usage

Second, you can interrogate the TASKW ARNINGS task attribute. This task attribute
returns the value of the WARNINGS file attribute of the object code file that is being
executed. The WARNINGS file attribute, in turn, stores the message numbers for all
the warning messages that the system has ever displayed for processes executing code
from that object code file. The following is an example of a declaration and statements
you can use in an ALGOL program to suppress all previously displayed warning
messages:

EBCDIC ARRAY WARN[0:999];
REPLACE WARN BY MYSELF.TASKWARNINGS;
REPLACE MYSELF.SUPPRESSWARNING BY WARN;

You might also find it useful to suppress DISPLAY messages. A process issues a
DISPLAY message by executing a DISPLAY statement. DISPLAY messages are used
to enable a process to communicate information to the user without actually opening a
remote file or ODT file. DISPLAY messages appear in the MSG (System Messages)
system command display, at the terminal of the user that initiated the process, and in the
system log.

If a process is initiated by a user at a data comm terminal, the DISPLAY messages
issued by the process are probably of interest only to that user. The appearance of these
messages in the MSG display can be a needless distraction to the system operator. You
can eliminate this distraction by setting the DISPLAYONL YTOMCS task attribute to
TRUE for the process. When this attribute is TRUE, if the process is initiated from a
data comm terminal, DISPLAY messages appear at the originating terminal but do not
appear in the MSG display at the ODT.

Localization
Localization is the process of tailoring the user interface of a program to users of a
particular nation or culture. Two task attributes can assist you in the localization
process: the LANGUAGE task attribute and the CONVENTION task attribute.

You <;!an use the LANGUAGE task attribute to specify the language that is used for a
process. This task attribute has effects on two levels:

• The system attempts to use the specified language when displaying any system
messages generated for the process, such as BOT, EOT, and RSVP messages. The
LANGUAGE value has effect only if system messages in the specified language have
been installed on your system.

• The specified language becomes the default language for any messages
that are displayed by MESSAGE SEARCHER statements in an ALGOL or
NEWP program. The LANGUAGE value has effect only if a version of the
OUTPUTMESSAGEARRAY using the specified language has been bound to the
object code file.

You can use the CONVENTION task attribute to specify the conventions for dates,
times, and currency used by a process. This task attribute affects processes that use
the CENTRALSUPPORT library to format data according to requested conventions.

8600 0494-000 9-15

Controlling Process I/O Usage

The CONVENTION task attribute specifies a default convention to be used-for
CENTRALSUPPORT procedure calls. The user process can selectively override this
default through parameters to the CENTRALSUPPORT procedures.

For further information about localization, refer to the A Series MultiLingual System
(MLS) Administration, Operations, and Programming Guide.

Limiting I/O Usage

9-16

When a process executes an I/O statement, the central processor must execute some
operating system code to initiate the I/O operation. Thereafter, I/O processors (lOPs),
data link processors (DLPs), and various peripheral devices such as disk drives might all
devote varying amounts of time to executing the I/O operation. At the completion of the
I/O operation, the central processor executes some I/O finish code.

Of all the system resource usage caused by I/O operations, only the I/O initiation time
- is recorded by the system for individual processes. The accumulated I/O initiation time
for a process is stored in the ACCUMIOTIME task attribute. The I/O initiation time for
a process is also visible in the output from the TI (Times) system command and in the
Major Type 1, Minor Types 2 and 4 (EOJ and EOT) system log entries.

You can use the MAXIOTIME task attribute to set a limit on the amount of I/O initiation
time that a process can use. When the ACCUMIOTlME task attribute reaches a value
equal to that of MAXIOTIME, the system discontinues the process and displays the
error message "EXC I/O TIME".

The main use of the MAXIOTlME task attribute is to ensure that WFL jobs are placed
in the proper job queues. For example, suppose there is a high-priority job queue that is
intended for jobs that are not very I/O intensive. The system administrator can use the
IOTIME job queue attribute to provide default and limiting values for the MAXIOTlME
task attribute of all WFL jobs that use the job queue. If you submit an extremely I/O
intensive job through the job queue, the system discontinues the job when it exceeds the
MAXIOTIME value .. This enforcement of the MAXIOTIME value gives you an incentive
to resubmit the job through a different job queue. For an introduction to the subject of
job queues, refer to the discussion ofWFL in Section 4, "Tasking from Programming
Languages. "

It is also possible for the system administrator to limit each person's usage of disk space.
Refer to "Limiting Disk Usage" earlier in this section.

86000494-000

Section 10
Determining Process History

Process history consists of information about how a process terminated, the accumulated
resource usage of the process, and what actions the process took while it was active.
Process history information can help you determine if a program is running as intended,
and can help you to locate the source of any problems·that arise.

This section describes the uses of various sources of process history information,
including termination messages, job summaries, system log entries, history-related task
attributes, and program dumps.

Understanding Termination Messages
You can quickly find out how a process terminated by examining the C (Completed Mix
Entries) system command display. The following is an example of this display:

---Job-Task-Time--Hist---------- COMPLETED ENTRIES ----------------
* 1962\3430 11:43 EOT (LANJ) *LIBRARY/MAINTENANCE
* 2619\3368 11:43 EOT (ELMER) *OBJECT/MAIL ON PACK
* 3353\3354 11:43 SNTX (ORDS) *BINDER ON SYS37 MCP/FIXSBP ON DPMAST

3384\3422 11:42 O-DS (JAS) (JAS)MARC WFL
3384\3423 11:42 P-DS (JAS) (JAS)WFLCODE
3327\3327 11:42 EOJ (RALPH) JOB (RA,LPH)OBJECT/BNATEST ON DPMAST

For each entry, the following information is displayed: the job number, the mix number,
the time the process terminated, the type of termination, the usercode. of the process,
and the name of the process (which is usually the object code file title).

If the process was initiated from a Menu-Assisted Resource Control (MARC) session,
then a similar termination message is automatically displayed on the TASKSTATUS
screen. The following is an example:

12:10 3384\3718 EOT (ROLLINS)MARC WFL

For a process initiated from a Command and Edit (CANDE) session, abnormal
terminations result in a display of the termination type and other process history
information. The following is an example:

86000494-000

#2316 OPERATOR DSED @ (00000120)*
#O-DS @ 00000120.
#ET=3.2 PT=0.1 10=0.1

10-1

Determining Process History

The first two lines shown in the preceding example would be displayed only for an
abnormal termination. These lines give the mix number, the cause of the termination,
and the sequence number of the statement the process was executing when it
terminated. (The sequence number is replaced by a code address if the program was
compiled without the LINEINFO compiler option being set. For information about how
to interpret the code address, refer to "Determining Where a Fault Occurred" later in
this section.) .

All terminations, whether normal or abnormal, result in the display of a line similar to
the third line shown in the preceding example. This line gives statistics on the elapsed
time, accumulated processor time, and accumulated I/O time for the process.

The CANDE, MARC, and ODT termination messages make use of the same termination
type abbreviations. Of these, the following indicate normal terminations:

EOJ

EOT

SNTX

The process was a job that terminated normally.

The process was a task that terminated normally.

The process was a compilation that encountered syntax errors. The
process terminated normally, but no object code file was created.

Table 10-1 lists the abnormal termination messages, their meanings, and the
corresponding values for history-related task attributes. For an introduction to
history-related task attributes, refer to "Determining the Type of Termination" later in
this section.

Table 10-1. Abnormal Termination Messages

Message HISTORYTYPE HISTORYCAUSE Meaning

A-OS 8 0 The process Was a Work Flow
Language (WFL) job whose initiation
failed because the job attribute list
included an invalid task attribute
assignment; or, the process was
discontinued but is now executing
an EPILOG procedure.

O-OS 4 6 The process encountered a data
comm error.

E-OS The process encountered a Data
Management System II (OMSII)
error.

F-OS 4 4 The process requested a machine
operation that could not be
executed. Examples are dividing by
zero or reading past the end of an
array.

I-OS 4 7-9 The process encountered an VO
error.

continued

10-2 8600 0494-000

Determining Process History

Table 10-I. Abnormal Termination Messages (cont.)

Message HISTORYTYPE HISTORYCAUSE Meaning

N-DS 4 13 The process encountered a BNA
error.

O-DS 4 1 The process was discontinued by an
operator command.

P-DS 4 2 The process attempted an illegal
action or deliberately set its STATUS
task attribute to TERMINATED, or
was terminated because its parent
terminated.

Q-DS 7 a The process was a job that did not
qualify for any job queue, or was
discontinued by an operator
command while it was in a job
queue,

R-DS 4 3 The process exceeded a resource
limit, such as MAXPROCTIME.

S-DS 4 5 The process violated system
parameters.

U-DS 4 10-11 The process was discontinued by an
unknown cause.

Unn-DS Not specified nn The process was discontinued with
an unrecognized HISTORYCAUSE
value. In the actual message, the
digits nn are replaced by the
HISTORYCAUSE value.

1-DS 4 0 The process was discontinued by an
unknown cause.

8600 0494-000 10-3

Determining Process History

Using Log Information
The system records the activity of each process in two types of logs:

• The system log (SUMLOG)

This is a central log that stores information about all kinds of actions on the system.

• Joblogs

A separate job log is created for each job on the system and is stored in the job's job
file. The system creates a job log for WFL jobs and other independent processes, as
well as for CANDE and MARC sessions. The jpb log contains information about the
job (or session) and its descendant tasks. Depending on the values of various task
attributes and system options, the system might create a printout of the job log,
called thejob summary.

The following subsections explain how the programmer and system operator can control
the contents of these logs and the generation of reports from these logs.

Specifying the Information to ·Be Logged

10-4

An operator can use the LOGGING (Logging Options) system command to select the
major and minor log entry types that are to be logged. You can specify that a particular
type of log entry is to appear in the job log, in the system log, in both, or in neither. The
following LOGGING command causes Major Type 1, Minor Type 5 (File Open) entries to
appear injob logs, and Major Type 1, Minor Type 6 (File Close) entries to appear in the
system log:

LOGGING 1,5 JOBFILE ALL;1,6 SUMLOG ALL;

You can use the DEPTASKACCOUNTING task attribute and the FILEACCOUNTING
task attribute to control certain types of logging. These task attributes affect the system
log and the job log equally. You can use DEPTASKACCOUNTING to prevent the system
. from generating log entries to record the initiation and termination of a dependent
process. You can use the FILEACCOUNTING task attribute to prevent the system
from generating log entries to record file open and close actions. You can create defaults
for these task attributes on a systemwide basis with the ACCOUNTING (Resource
Accounting) system command. You can create defaults for these task attributes on a
usercode basis through assignments to the usercode attributes with the same names in
the USERDATAFILE.

You can use either of two system commands to log comments about the history of a
particular process. The LC (Log Comment) system command enters a comment in
the system log only. The LJ (Log to Job) system command enters a comment in both
the system log and the job log of a particular job. The following is an example of this
command:

3335 LJ JOB RAN NORMALLY

8600 0494-000

Determining Process History

You can use the NOJOBSUMMARYIO task attribute to suppress the logging of
information in the job log. If NOJOBSUMMARYIO is set, no entries are written
to the job log, except for the Major Type 1, Minor Type 1 (BOJ) entry or the Major
Type 4, Minor Type 1 (Log-on) entry. NOJOBSUMMARYIO can also be set and reset
throughout ajob to prevent selected parts of the job from appearing in the job log. Using
NOJOBSUMMARYIO saves I/O time and thus allows the job to run more efficiently.

You can use the LG (Log for Mix Number) system command and the LOGSELECT
usercode attribute to enable logging of selected types of events for a particular usercode.
These features enable the system administrator to monitor the activities of a particular
user who might be committing some type of security breach. These features affect the
system log only.

Controlling Job Summary Printing

The printing of job summaries is controlled primarily by the JOB SUMMARY task
attribute. To cause job summary printing, you can assign a value of UNCONDITIONAL,
and to prevent job summary printing, you can assign a value of SUPPRESSED. To cause
conditional printing of job summaries, you can use either of two values: ABORTONLY
or CONDITIONAL. Either of these values causes job summary printing if the job or
any of its tasks terminate abnormally. The difference between the two values is that
the CONDITIONAL value also causes job summary printing if the job has any printer
backup files associated with it or if a compiler task encounters syntax errors.

If the JOBSUMMARY task attribute has a value of DEFAULT, thenjob'-summary
printing is controlled by either of two types of defaults.

• If the NOSUMMARY option of the OPTION task attribute is set, then a
JOBSUMMARY task attribute of DEFAULT is interpreted as CONDITIONAL.

• If the NOSUMMARY option of the OPTION task attribute is reset, then the Print
System JOBSUMMARY option controls the job summary printing. The Print
System JOBSUMMARY option is set or reset through the PS DEFAULT system
command. The JOBSUMMARY option can specify any of the following values:
CONDITIONAL, UNCONDITIONAL, SUPPRESSED, or ABORTONLY.

Note that the Print System JOBSUMMARY option replaces the operating system option
NOSUMMARY, which is no longer supported.

Ajob summary can be printed for any WFL job that compiled successfully. This is true
even if the job never ran because no job queue would accept it or because an operator
discontinued the job while it was queued.

Saving the Job Summary File

You can use the JOBSUMMARYTITLE task attribute to cause the job summary file to
be saved as a permanent disk file.

86000494-010 10-5

Determining Process History

If the JOBSUMMARYTITLE value is a null string (the default value), then the system
creates ajob summary file only ifajob summary is-to be printed. If the system does
create ajob summary file, the system removes the file once it is printed. Thejob
summary file title usually has the following form:

*BD/000<job number>/000SUMMARY

If you assign a file title to JOBSUMMARYTITLE, then the system creates ajob
summary file with the specified file title. The job summary file remains on disk, whether
or not the system prints the job summary. You can use a Command and Edit (CANDE),
Menu-Assisted Resource Control (MARC), or WFL PRINT command to print out the job
summary file later. For a description of the PRINT command, refer to the A Series Print
System (PrintS/ReprintS) Administration, Operations, Programming Guide.

Analyzing the System Log

You can use the LOGANAL YZER utility to obtain a detailed report of the history of a
particular process. You can invoke LOGANAL YZER by using the LOG command from
CANDE, MARC, WFL, or an ODT. The LOG command causes the current system log to
be searched, unless the title of an old system log is specified.

The following command displays all log entries for the job with mix number 7483 and for
all descendants of that job:

LOG JOB 7483

The following command displays all log entries for the process with mix number 8923:

LOG MIX 8923

You can specify various options to limit the types of entries that are displayed for the
process and to direct the output to an ODT, a remote terminal, or a printer. For details,
refer to the discussion of LOGANALYZER in theA Series System Software Support
Reference Manual.

Progra m matica lIy I nterrogati ng Process History

10-6

After a task terminates, the task variable associated with it continues to exist until the
parent exits the block that contains the task variable declaration. As long as the task
variable exists, the parent can use it to interrogate the final task attribute values of the
task. By interrogating history-related task attributes, the parent can find out whether
the task terminated normally.

On the other hand, the history ofajob cannot be interrogated through task attributes.
The task variable of ajob can be accessed only by the job itself and its descendants, and
the descendants cannot survive the termination of the job.

86000494-010

Determining Process History

Determining the Type of Termination

Several task attributes and a special WFL expression are available for determining
how a task terminated. The relevant wFL expression is the task state inquiry. This
exp~ession can be used to determine whether termination was normal or abnormal. For
example, the following WFL statement causes a specified action to be taken if the task
terminated abnormally:

IF TSK ISNT COMPLETEDOK THEN

Another way to determine whether a task terminated normally is to inspect the
HISTORYTYPE task attribute. A HISTORYTYPE value of NORMALEOTV indicates
that the termination was normal. A value of DSEDV indicates that termination was
abnormal. Most of the other values indicate that the process has not yet terminated and
give an indication of its current state.

If termination was abnormal, the HISTORYCAUSE task attribute can be interrogated
to determine the general type of abnormal termination that occurred. For example, a
value of OPERATORCAUSEV indicates that an operator command discontinued the
process and a value of DCERRV means that the process was discontinued because of a
data comm error.

A more detailed account of why a task terminated abnormally is stored in the
HISTORYREASON task attribute. For example, suppose the HISTORYCAUSE
value is RESOURCECAUSE, meaning that a resource limit was exceeded. The
HISTORYREASON value might be PROCESSEXCEEDEDV, which means specifically
that the processor time limit was exceeded.

The system uses the mSTORYTYPE and HISTORYCAUSE values to determine what
termination message to display for a process. The correspondence between these task
attributes and the termination messages is shown in Table 10-1.

Determining Whether a Compilation Was Successful

You can use any of several methods to determine programmatically whether a particular
compilation uncovered syntax errors in the source program.

For a compilation initiated from WFL, the task state expression can be used to
determine whether the compilation was successful. To use this expression, a task
variable must first be associated with the compilation in the COMPILE statement. The
following is an example:

COMPILE OBJECT/PROG WITH ALGOL [COMPILETASK] LIBRARY;
IF COMPILETASK IS COMPILEDOK THEN

RUN SYSTEM/XREFANALYZER (0);

Another way to determine whether the compilation was successful is to interrogate the
HISTORYTYPE task attribute of the compilation. A value of NORMALEOTV means

8600 0494-000 10-7

Determining Process History

that the compilation was successful, but a value of SYNTAXERRORV means that syntax
errors were found.

Another method that can be used is to interrogate the TASKV ALUE task attribute.
TASKV ALUE has a value of 0 (zero) if the compilation was successful or 1 if syntax
errors were found.

Responding to Task Failures

WFL includes a special statement that specifies actions to be taken if any offspring
terminates abnormally. This is the ON TASKFAULT form of the ON statement. The
ON TASKFAULTstatement remains in effect for the remainder of the job unless
overridden by another ON TASKFAULT statement. For example, a WFL job could
include the statement ON TASKFAULT, ABORT. This statement causes the job to
terminate abnormally when any of its offspring terminates abnormally.

Determining Where a Fau.lt Occurred

10-8

You can use the STACKHISTORY task attribute to· determine the statement that was
being executed and the procedures that had been entered when a process terminated

. abnormally. To understand the value returned by this attribute, you must have compiled
the program that was being executed with one or both of the following compiler options
set: LINEINFO and LIST.

Setting LINE INFO causes the STACKHISTORY value to include the sequence number
for each of the relevant statements in the source program. Setting LIST causes the
compiler to produce a printout of the source program that includes code addresses for
each line. The code addresses are needed to interpret the STACKHISTORY value if
LINEINFO was not set.

8600 0494-000

Determining Process History

The following is an example of the source program printout for a program that was
compiled with the LIST and LINEINFO options set. (The example has been condensed·
horizontally to fit on the page.)

BEGIN 00000200 000:0000:13
BLOCK#1 IS SEGMENT 1313133

1 00013133013 003:0000:1
000013400 003:0000:1

REAL X, Y; 00(00500) 003:0000:1
PROCEDURE ONE; 00000600 003:0000:1
BEGIN 00000700 003:0000:1

PROCEDURE TWO; 00000800 003:0000:1
ONE IS SEGMENT 00134

2 00000900 004:0000:1
BEGIN 00001000 004:00013:1

Y := X DIV 0; 00001100 004:0000:1
END; 3 00001200 004:0001 :2

3 00001300 004:0001 :3
TWO; 00001400 004:0001:3

END; 00001500 004:0002:1
ONE (004) LENGTH IN WORDS IS 0005

2 00001600 003:0000:1
00001700 003:00013:1

ONE; 00001800 003:0000:1
00001900 003:0000:5

END. 00002000 003:0000:5
BLOCK#1 (003) LENGTH IN WORDS IS 0006

In this example, each line of source code ends with the sequence number and code
address of the line. The code address is divided into three parts by colons; the first part
is the code segment number, the second is the word number, and the third is the syllable
number. The numbers in the code address are in hexadecimal format.

If a process terminates normally, the STACKHISTORY value is a null string. However,
if the process terminates abnormally, STACKHISTORY returns a value such as the
following:

004:0000:5 (00001100),004:0002:1 (00001400), 003:0000:5 (000018130).

This value gives the code address and sequence number for the statement that was being
executed when the process terminated and for each procedure invocation statement that
was in effect when the process terminated. Thus, the value in this example indicates
that the statement at line 1100 was being executed when the process terminated, and
that procedure invocation statements at lines 1400 and 1800 were in effect.

If LINEINFO is set, STACKHISTORY returns the following value:

004:0000:5, 004:0002:1, 003:0000:5.

8600 0494-000 10-9

Determining Process History

10-10

The numbers in this example give a somewhat less exact idea of the locations of the
statements that were being executed when the process terminated. Each statement
usually occurs on the line preceding the specified code address. The address 004:0000:5
does not appear in the printout, but the statement occurs on the next lower-numbered
line: 004:0000:1.

Note that if the object code file was produced by the Binder, you must use some
extra care in interpreting the code addresses or sequence numbers returned in the
STACKHISTORY value. When the Binder produces a bound object code file, the Binder
changes the code segment numbers for statements in the subprogram. Fortunately, if
you use the Binder option LIST, the Binder produces a printout that lists such changes.
The following is an example of such a printout:

o B J E C T / A L G 0 L / BIN DON DIS K
=

HOST IS OBJECT/ALGOL/HOST;
BIND PRINTIT FROM OBJECT/ALGOL/SUB;
STOP;
BEGIN BINDING PRINTIT OF BLOCK#l FROM OBJECT/ALGOL/SUB

PRINTIT (02,0006) CHANGED TO (02,0006)
K <---- NEW GLOBAL ADDED TO HOST -- WARNING ONLY

K (02,0004) CHANGED TO (02,0008)
LINE (02,0005) CHANGED TO (02,0003)
J (02,0003) CHANGED TO (02,0005)
BUFFER (02,0002) CHANGED TO (02,0004)
?010 (01,0006) CHANGED TO (01,0006)

00001270
00001272
00001274

<SEGDICT ITEM> (01,0002) CHANGED TO (01,0005) = 03 000001300001
<SEG DICT ITEM> (01,0003) CHANGED TO (01,0007) = 05 07000000005F
<SEG DICT ITEM> (01,0004) CHANGED TO (01,0008) = 05 080000540002

END OF BINDING PRINTIT

Note. the three lines near the bottom of the list that begin with" < SEG DICT ITEM> ".
These list changes to the address couples for code segments in the subprogram. The
seco~d number in each address couple is the offset, which is the same as the code
segment number for that code segment. The list informs us that code segment number 2
was changed to 5, 3 was changed to 7, and 4 was changed to 8. Therefore, you should
look at the STACKHISTORY value for code ·addresses that begin with 5, 7, or 8, and
make a note that they really begin with 2, 3, or 4, respectively. Then you can look for the
code addresses in the compiler listing that was created when you originally compiled the
subprogram. Suppose that the STACKHISTORY value is as follows:

005:000F:1, 003:0017:3.

You should translate the first address into 002:000F:1, and then look at the compiler
listing of the subprogram to determine which statement had that code address. The
second address does not begin with 5, 7, or 8, so you don't need to translate it. You can
find the procedure invocation referred to by the second address at 003:0017:3 in the
compiler listing for the host program.

8600 0494-000

Determining Process History

If the host program and the subprogram were compiled with the LINEINFO compiler
option set, and the Binder was run with the LINEINFO Binder option set, then the
bound object code file contains sequence numbers that appear in the STACKHISTORY
value. The Binder does not change the sequence numbers of the host program or the
subprogram. When interpreting the sequence number, beware of the possibility that the
same sequence number occurred in both the host program and the subprogram file. For
example, suppose that the following is the STACKHISTORY value:

005:000F:1 (00000750), 003:0017:3 (00001350).

The subprogram and the host program both might contain lines with the sequence
number 750, and they also both might contain lines with the sequence number 1350.
However, the last address in the STACKHISTORY value always refers to a statement
in the host program. At line 1350 in the host program listing is a procedure invocation
statement. If this statement invokes the bound-in procedure, then line 750 is found in
the subprogram listing. Otherwise, line 750 is found in the host program listing.

Another task attribute that provides information related to process history is the
STOPPOINT task attribute. This real-valued attribute has fields defined that store the
fault reason and the code address. The fault reason is the same as the value returned by
the HISTORYREASON task attribute, and the code address is the same as the first code
address of the STACKHISTORY value.

Designing a Program to Survive Faults

A fault is an illegal action that is detected by the hardware, such as an attempt to divide
by zero. In general, a process is discontinued if it encounters a fault. However, ALGOL
provides a unique feature that can be used to allow the process to continue normal
execution after a fatilt. The ALGOL ON statement specifies actions to be taken if a fault .
occurs. In addition, the ON statement can be used to interrogate the type of fault and
the stack history. The stack history value returned is identical in format to that returned
by the STACKHISTORY task attribute.

If any fault occurs, the following ON statement stores the stack history into array
FAULTARRAYand the fault type into FAULTNO. The statement then invokes the
procedure HANDLEFAULTS, passing the fault type to it as a parameter:

ON ANYFAULT [FAULTARRAY:FAULTNO], HANDLEFAULTS(FAULTNO);

Another method of responding to faults is to use the RESTART task attribute. For .
details, refer to Section 11, "Restarting Jobs and Tasks."

Controlling Program Dumps
A program dump is a printout of information about the current state of a process. You
can use this information to help debug a defective program. The following subsections
explain how to specify when program dumps are to occur, and how to specify which types
of information should be included in the dump.

8600 0494-000 10-11

Determining Process History

On a system running InfoGuard security enhancement software, some security options
can restrict the contents of program dumps and the ability to copy program dumps.
Refer to the A Series Security Administration Guide for details.

Using Program Statements to Control Program Dumps

You can initiate and control program dumps in either of two ways: by using program
dump statements, or by using the OPTION task attribute.

The program dump statements that are available are the ALGOL PROGRAMDUMP
statement, the COBOL(68) CALL PROGRAM DUMP statement, the COBOL74
and COBOL85 CALL SYSTEM DUMP statement, the FORTRAN or FORTRAN77
DEBUG PROGRAMDUMP statement, and the Pascal Program dump procedure.
Some lap.guages provide other statements to dump process information, but these are
language-specific features. The preceding statements call an operating system feature
that is available from a variety of sources.

Alternatively, you can enable a program dump by setting certain options of the OPTION
task attribute. If the FAULT option is set, then the process generates a program
dump if it terminates abnormally because of an internal cause. If the DSED option is
set, then the process generates a program dump if the process terminates abnormally
because of an external cause. For a definition of internal and external causes, refer to
"Understanding Internal and External Causes" later in this section.

You can also specify various dump options, which determine the types of information
that are included in the program dump. These dump options can be accessed through
assignments to the OPTION task attribute. In ALGOL, FORTRAN, FORTRAN77, and
Pascal, these options can also be set by parameters in a program dump statement.

If a program dump statement specifies dump options, then the dump options specified in
that statement are used, and the value of the OPTION task attribute is ignored. If the
program dump is caused by the DSED or FAULT option of the OPTION task attribute,
or by a program dump statement that does not specify any dump options, then the dump
options specified by the OPTION task attribute are used for the dump.

The possible dump options are ARRAY, BASE, CODE, DBS, FILE, LIBRARIES,
PRESENTARRAYS, PRIVATELIBRARIES, SIBS, TODISK, and TOPRINTER. The
effects of these options are explained in the discussion of the OPTION task attribute
in the A Series Task Attributes Programming Reference Manual. The effects of the
TODISK and TOPRINTER options are also discussed under "Controlling the Program
Dump Destination" later in this section.

Using Operator Commands to Control Program Dumps

10-12

If a process is behaving abnormally, you might want to invoke a program dump for the
process. You can use the dump later to help debug the process.

8600 0494-000

Determining Process History

One way you can invoke a dump is by using the DUMP (Dump Memory) system
command. The <mix number> DUMP form of this command initiates a program dump
for the specified process. The < mix number> DUMP < option list> form of this
command assigns dump-related options to the OPTION task attribute and then initiates
a program dtmlp. The OPTION values are retained and affect any later program dumps
for the process, unless overridden by later assignments. The following example dumps
information about arrays and files for a process with the mix number 3457:

3457 DUMP ARRAYS, FILES

It is possible to view the program dump while the process is still running. Refer to
"Analyzing a Program Dump from a Running Process" later in this section.

You can also trigger a dump by way of the DS (Discontinue) system command. The
< mix number> DS < option list> form of this command initiates a program dump and
discontinues the process. The option list in this command controls the contents of the
dump by assigning options to the OPTION task attribute. The following example dumps
arrays and code segments and discontinues the process with mix number 3457:

3457 DS ARRAYS, CODE

Note that the simple form of the DS command, < mix number> DS, causes a program
dump if the DSED option of the OPTION task attribute was previously set through
object code file assignments, task equations, or task attribute assignments executed by
the process. You can prevent such a dump from occurring by using the < mix number>
DB NONE form of the DS command.

Controlling the Program Dump Destination

You can direct a program dump to a pFinter backup file for printing, to a disk file for later
analysis and printing, or both. You can control the program dump destination through
two dump options: TOPRINTER and TODISK. These options are available in ALGOL,
FORTRAN77, and Pascal through program dump statements. Languages that provide
access to task attributes can also assign these options by way of the OPTION task
attribute. Additionally, these options can be assigned in a DS (Discontinue) or DUMP
(Dump Memory) system command.

The TOPRINTER option causes any program dumps generated by the process to be
directed to a printer backup file called the task file. For details about the task file, refer
to "Using the Task File" later in this section.

86000494-010 10-13

Determining Process History

10-14

The TODISK option causes any program dumps generated by the process to be directed
to a disk file. The contents of the program dump are determined by the other dump
options, except for the BASE option. Whenever TODISK is set, the BASE option is
treated as if it is also set. The folloWing are advantages to using the TODISK option
instead of the TOPRINTER option:

• The dump is performed more rapidly, and produces less printer output at the time of
the dump. This factor makes it convenient for you to set the dump options to dump
all possible information. By setting all the dump options, you reduce the likelihood of
having to try to reproduce the problem later to obtain more information.

• The disk file stores dump information in a format that can be analyzed by the
DUMPANALYZER utility. DUMPANALYZER also enables you to decide at
analysis time what information to include in the report. You can even run
DUMPANALYZER repeatedly to produce-reports on different information from the
same dump. Another benefit is that DUMP ANALYZER provides a detailed analysis
of the process information block (PIB).

You can also use DUMP ANAL YZERto produce a report similar to one created by
the TOPRINTER option. Like TOPRINTER reports, DUMP ANALYZER reports
include the names of all the identifiers used by the process. (However, identifiers are
included in the report only if all object code files used by the process are present when
DUMPANALYZER is run.) . For information about running the DUMPANALYZER
utility, refer to the A Series System Software Support Reference Manual.

When the TODISK option is used, the default title for the resulting disk file has the
following format:

«usercode»PDUMP/<process name>/<date>/<time>/<mix number> ON <family>

The values of the various elements of this title are as follows:

Title Element

<usercode>

<process name>

<date>

<time>

< mix number>

<family>

Value

The value of the USERCODE task attribute of the process.

The value of the NAME task attribute of the process, except that any
usercode or family name is omitted. If the resulting process name is
more than eight nodes long, then only the first eight nodes are included.

The current date, in the form YYMMDD.

The current time, in the form HHMMSS.

The value of the MIXNUMBER task attribute of the process.

DISK, unless the FAMILY task attribute provides a primary family to be
used in place of DISK.

The following is an example title:

(SMITH)PDUMP/OBJECT/TEST/X/890105/155015/9210 ON STAFFPK

86000494-010

Determining Process History

You can use file equations to specify a different file name or family name for a dump to
disk. You can file-equate the FILENAME, FAMILYNAME, and TITLE file attributes.
The file equations must specify PDUMP as the internal name of the file. For example, a
WFL job can use the following statement to initiate a program and specify the title of any
program dumps generated by the program. Note that the file equation has effect only if
the TODISK option is specified, either in the OPTION task attribute or in the statement
that invokes the program dump.

RUN OBJECT/JADCON;
FILE PDUMP(TITLE = JADCON/DUMP ON PACK);
OPTION (FAULT, TODISK);

If a program dump occurs, the system adds a suffix to the file-equated title. The
suffix is a 3-digit integer ranging from 000 to 999. The suffix is incremented by one
for each program dump generated by the process. Thus, in the previous example, if
OBJECT/JADCON runs under usercode BLAKE and generates three program dumps in
a single run, the program dumps receive the following titles:

(BLAKE)JADCON/DUMP/BBB ON PACK;
(BLAKE)JADCON/DUMP/BBl ON PACK;
(BLAKE)JADCON/DUMP/BB2 ON PACK;

You can include a usercode in the PDUMP file equation, but only a privileged process can
assign the program dump a usercode different from that of the process. If the process is
nonprivileged, and PDUMP is equated to a different usercode, then a security violation
results when a program dump occurs. The system deletes the program dump file rather
than saving it under the requested usercode.

If neither the TODISK nor the TOPRINTER option is set, the operating system option
PDTODISK determines whether the program dump is directed to a disk file or to the
task file. If the PDTODISK option is set, program dumps are written by default to a disk
file; otherwise, program dumps are directed by default to the task file. An operator can
use the OP (Options) system command to set or reset the PDTODISK option.

If either the TODISK or TOPRINTER option is set for a process, the program dump is
direct~d only to the destination specified by the option: a disk file for TODISK, or the
task file for TOPRINTER. If both of these options are set, then two program dumps
occur: the first is directed to disk and the second is directed to the task file.

If the TODISK and TOPRINTER options are both used, the two dumps that result can
differ slightly. This is because the act of directing a program dump to disk can cause
some arrays used by the process to be made present or overlayed. The contents of the
arrays are not affected, and both present and overlayed arrays are included in the dump.
However, if you compare both of the dumps that were produced, you might see the same
array indicated as present in one dump, and overlayed in the other dump.

8600 0494-010 10-15

Determining Process History

Using the Task File"

10-16

The task file is a predeclared printer backup file that is associated with each process. If a
program dump is directed to a task file, the task file is automatically queued for printing,
in the same way as other printer backup files produced by a process. If a process
generates multiple program dumps, then by default, they are all stored in the same task
file.

You can use the TASKFILE.task attribute to write comments to the task file or
interrogate the file attributes of the task file. You can also use this task attribute in a
program to force multiple program dumps to be stored in separate backup files. The
program can achieve this effect by closing the task file after each dump and then writing
a comment to the task file. An example of this method is given in the TASKFILE task
attribute description in the A Series Task Attributes Programming Reference Manual.

A program can also use the T ASKFILE task attribute to access the task file of an
ancestor process.

You can assign file attributes to the task file through file equation. This task attribute
can be assigned only before process initiation. The following is a WFL example of such
an assignment:

RUN OBJECTjPROG;
FILE TASKFILE (PRINTDISPOSITION=DONTPRINT,USERBACKUPNAME=TRUE,

FILENAME=PROG/DUMP);

You can also use the BDNAME task attribute to save the task file and assign a prefix
other than *BD to the file title.

Some security restrictions apply if file equations or a BDNAME task attribute
assignment is used to prefix the task file title with a usercode other than that of the
process. The following are WFL examples of such statements:

RUN OBJECTjPROG;
BDNAME = (FRAN)PROGDUMP;

RUN OBJECTjPROG;
FILE TASKFILE (PRINTDISPOSITION=DONTPRINT,USERBACKUPNAME=TRUE,

FILENAME=(FRAN)PROGDUMP);

In general, a process must have privileged status to open a file under another usercode ..
The system enforces this rule even more strictly for task files by requiring that the
process have a privileged usercode rather than merely being a privileged program. The
purpose of this restriction is to prevent nonprivileged users of privileged programs from
using a program dump to overwrite files under another usercode.

" 86000494-010

Deter'mining Process History

This restriction is not foolproof, however. If a privileged program is running under a
nonprivileged usercode, and the program opens the task file with a write statement
before the dump takes place, the program can successfully open the task file under
another usercode. The following is an ALGOL example of such a write statement:

WRITE (MYSELF.TASKFILE,//,"DUMP NUMBER ONE");

When the program dump takes place later, the dump is directed to the already-opened
task file. For this reason, if you are designing a privileged program intended for use by
nonprivileged users, you should not include any statements that would cause the task file
to be opened before the dump.

Analyzing'a Program Dump from a Running Process

Some program dumps occur when a program is terminated, either by a fault or by a DS
(Discontinue) system command. However, there can also be situations when it is useful
to generate a program dump for a process while it is still running. Such a dump can be
initiated by the DUMP (Dump Memory) system command or by a PROGRAMDUMP
statement in the program.

By default, program dumps are directed to printer and do not print until the process and
its job have terminated. The following paragraphs explain how you can gain access to the
program dump while the process is still running.

One method of gaining immediate access to a program dump is by directing the program
dump to disk. For information on directing dumps to disk, refer to "Controlling the
Program Dump Destination" earlier in this section. If the program dump is directed to
disk, then the dump file becomesavaiIable as soon as the dump is completed. You can
then run the DUMPANALYZER utility to analyze the disk file. For a description of
DUMPANALYZER, refer to theA Series System Software Support Reference Manual.

If the program dump. is directed to printer, you can enable immediate printing by setting
thePRINTDISPOSITION attribute of the task file to CLOSE. You can accomplish this
assignment with a task equation in the statement that runs the program. The following
is a WFL example:

RUN OBJECT/TEST/ALGOL/TASK;FILE TASKFILE(PRINTDISPOSITION= CLOSE)

Alternatively, you can assign the task file PRINTDISPOSITION through a FILE CARDS
task attribute assignment within the program. The following is an ALGOL example:

REPLACE MYSELF.FILECARDS BY
IIFILE TASKFILE(PRINTDISPOSITION = CLOSE);" 48 11 00 11

;

If the program dump is initiated by the DUMP command, the system closes the task file
at the end of the program dump. The PRINTDISPOSITION attribute then causes the
program dump to be queued for printing.

86000494-010 10-16A

Determining Process History

If the program dump is initiated by a PROGRAMDUMP statement in the program, the
task file is not closed automatically at the end of the dump. To cause immediate printing,
the program must follow the PROGRAMDUMP statement with a statement that closes
the task me. The following is an ALGOL example:

CLOSE(MYSELF.TASKFILE); .

Causing Symbolic Dumps for RPG Processes

10-168

The task file of an RPG process can store a symbolic dump instead of, or in addition to, a
program dump. A symbolic dump provides much of the same information as a program
dump, but is shorter and simpler to read. A symbolic dump can be produced in any of
the following ways:

• The RPG process can execute a DUMP operation code. This operation produces a
symbolic dump, but no program dump. By default, the symbolic dump is written to
the task file. However, the RPG process can specify that the symbolic dump is to be
written to another file previously declared by the process.

• The operator can enter the AX DUMP form of the AX. (Accept) system command in
response to a halted RPG program. This action produces a symbolic dump, but no
program dump. The symbolic dump is ~ways written to the task file.

• The RPG process can generate a program dump when the process terminates
abnormally and dump options were specified in a DS (Discontinue) system command
or the DSED or FAULT option was set in the OPTION task attribute. If an
abnormal termination results in a program dump, a symbolic dump appears in the
task file after the program dump. If there is no program dump, then no symbolic
dump is produced either.

The DUMP (Dump Memory) system command, when applied to an RPG process,
produces a program dump, but no symbolic dump.

86000494-010

Determining Process History

For further information, refer to the discussion of the DUMP operation code in the
A Series Report Program Generator (RPG) Programming Reference Manual, Volume 1:
Basic Implementation.

Effect of Resource Limits on Program Dumps

Resource limits imposed by task attributes are deliberately overridden by the system
for a process that is generating a program dump. Task attributes that might be
overridden include DISKLIMIT, ELAPSEDLIMIT, MAXCARDS, MAXIOTIME,
MAXLINES, MAXPROCTIME, MAXWAIT, SAVEMEMORYLIMIT, STACKLIMIT,
TEMPFILELIMIT, and W AITLIMIT. This policy ensures that a process can generate a
complete program dump, even when the termination is caused by the process exceeding
one of these limits.

Understanding Internal and External Causes

The causes of abnormal terminations are divided into two categories: internal and
external. The difference between these two types of causes can determine whether a
process generates a program dump, and whether the process restarts automatically.
To be more specific, the FAULT option of the OPTION task attribute causes a
program dump if a process is discontinued by an internal cause. The DSED option of
the OPTION task attribute causes a program dump if a process is discontinued by an
external cause. The RESTART task attribute causes a process to restart only if it is
terminated by an internal cause .

. An abnormru termination is considered to be due to an external cause if the
HISTORYCAUSE and mSTORYREASON task attributes have any of the following
combinations of values:

HISTORYCAUSE

OPERATORCAUSE

FAULTCAUSE

RESOURCECAUSE

PROGRAMCAUSE

HISTORYREASON

Any

DISKPARITYV

Any

DEATHINFAMILYV, INFANTICIDEV,
CLiENTDIEDINACRV, or LlBMAINTV

An abnorm& termination is considered to be due to an internal cause if the
mSTORYCAUSE and mSTORYREASON values are not any of the combinations listed
in the preceding table.

8600 0494-000 10-17

10-18 8600 0494-000

Sectio·n 11
Restarting Jobs and Tasks

A process can be discontinued by any of a variety of causes, including system commands,
program faults, or resource limits. In most situations, this discontinuation is permanent.
The system does not attempt to continue execution of the process or restart it from the
beginning. The system removes ~he process stack, process information block (PIB), task
attribute block (TAB), and any temporary files that the process was using. Only the
permanent files used by the process are preserved and reflect all changes made by the
process before it terminated.

However, in certain cases you can cause a process to be saved for later restarting.
Work Flow Language (WFL) jobs automatically restart after being terminated by a
system halt/load. Processes written in other languages can invoke a checkpoint, which
stores information that allows the process to be re-created later from a given point in
its execution. Also, any process can be designed to restart from the beginning after
encountering a program fault.

This section explains how to restart processes and how to design processes so they can
·be restarted successfully.

Designing WFL Jobs for Automatic Restarts
A WFL job is the only type of user process that automatically restarts if interrupted by a
halt/load. If a halt/load occurs while a WFL job is executing, then the WFL job and its
offspring are terminated. Mter the halt/l<?ad, the job recovers in one of two ways.

If the restarted WFL job was executing a checkpointed task at the time of the halt/load,
then a process called JOBRESTART appears in the W (Waiting Entries) system
command display. For information about how to respond to this waiting entry, refer to
"Restarting a Checkpointed Task" later in this section.

If the job was not executing a checkpointed task at the time of the halt/load, the system
begins execution of the job from the last point at which no offspring were in use. The
following examples illustrate this point:

• Suppose that at the time of the halt/load the WFL job is waiting for a single
synchronous task to complete. After the halt/load, the WFL job resumes by
executing the task initiation statement again. This creates a new task that is an
instance of the same program.

• Suppose that the WFL job initiates a total of three asynchronous tasks before the
halt/load, and all of these tasks are still in-use when the halt/load occurs. After the
halt/load, execution resumes with the first of the three task initiation statements.

8600 0494-010 11-1

Restarting Jobs and Tasks

• Suppose the WFL job initiated an asynchronous task called A and then another
asynchronous task called B. Then task A terminates. Then a halt/load occurs while
task B is still in use. Mter the halt!load, execution of the job resumes with the
statement that initiated taskA. This was the last point at which no in-use task
existed, because task A still existed when task B was initiated.

Preventing Job Side Effects

The values of string variables declared in the WFL job are not retained across a
halt/load.

The values of the task attributes of the job are also lost, except for the MIXNUMBER
task attribute and any task attributes assigned in the job attribute list. Thus, for
example, values assigned to any task attribute using the MYJOB task variable are not
retained. Further, the effects of the ST (Stop) system command are not retained across
a halt/load, because the ST system command simply assigns the STATUS task attribute
a value of SUSPENDED.

The ON RESTART statement can be used to specify actions that are taken immediately
after a halt/load. Typically, the ON RESTART statement is used to restore the values of
string, file, and task variables before job execution continues.

Task equations included in task initiation statements are reexecuted when the task
initiation statement is reexecuted. Therefore, the ON RESTART statement does not
need to restor~ attributes specified in task equations.

The job can determine whether it has been restarted by interrogating the RESTARTED
task attribute. This task attribute returns a value of TRUE if the job has been
restarted.

Preventing Task Side Effects

11-2

When the WFLjob reinitiates a task, the physical files used by the new task reflect any
changes made by the old task before the halt/load. When designing a program that is to
be initiated by a WFL job, you must plan ahead for this possibility and provide a way for
the program to produce appropriate audit trails.

A WFL task that opens a remote file might not be able to do so after a halt!load.
Normally, a task equation such as the following is used to enable a WFL task to open a
remote file:

RUN OBJECT/PROG;
STATION = MYSELF(SOURCESTATION);

This task equation directs the task to open any remote files at the station that initiated
the WFL job~ However, the requested station might not exist after a halt/load. This is
the case, for example, if the job was initiated from a pseudostation, such as a Command
and Edit (CANDE) dialogue opened through the Communications Management System
(COMS). This pseudostation is discarded during a halt/load and is not reestablished until

86000494-010

Restarting Jobs and Tasks

you log on to the same CANDE dialogue again. The task terminates abnormally if it
attempts to open a remote file at a nonexistent pseudostation.

Understanding Job Restart Failure

Any of the following circumstances can prevent a WFL job from restarting after a
halt/load:

• The system switches to using a different job description file after the halt/load. The
operator can use system commands to cause the switch to a different job description
file. For further information, refer to the discussion of tbe job description file in the
A Series System Administration Guide.

• The operator physically transfers the pack containing the job description file to a
different type of system and attempts to make it the new job description file for that
system.

If the operator uses the DL JOBS ON <family> command to mark the pack as the
location of the next job description file, then after the next halt/load, the system
attempts to restart the jobs from the specified job description file. The jobs should
restart successfully, provided that the pack was transferred to the same type of
system with the same type of memory architecture; for example, from one A 15
system with Actual Segment Descriptor (ASD) memory to another.

However, transfers from an A 3 to an A 10 system, and so on, are not supported and
might cause the system to halt/load again.

• The operating system option AUTORECOVERY is reset. The operator can reset
this option using the OP (Options) system command. Resetting AUTORECOVERY
causes the mix limit for each job queue to be set to zero after a halt/load. Any job
that would have restarted will instead remain in a job queue until the operator uses
the MQ (Make or Modify Queue) system command to assign a new mix limit to the
job queue.

Resetting AUTORECOVERY also prevents automatic halt/loads in some·situations.
For details, refer to the A Series System Commands Operations Reference Manual.

• An operator changes the job queue definitions after the job is initiated, but before
the halt/load. For example, the job attribute list of ajob might set CLASS =
10 and MAXPROCTIME = 60. The definition of job queue 10 might include a
PROCESSTlME limit of 120. The job is submitted through job queue 10 originally.
While the job is executing, an operator might use the MQ (Make or Modify Queue)
system command to lower the PROCESSTIME limit for that job queue to 30. Then
a halt/load might occur. Mter the halt/load, the job cannot restart because its
MAXPROCTIME value is greater than the PROCESSTIME limit that is now defined
for job queue 10. The job terminates abnormally with a queue violation.

• A task of the job executed a checkpoint and then was terminated by the halt/load.
In this case, the job is suspended after the halt/load and appears in the W (Waiting
Entries) system command display. For information about operator responses to this
situation, refer to "Restarting a Checkpointed Task" later in this section.

86000494-010 11-3

Restarting Jobs and Tasks

Understanding Disk Resource Control Effects

On systems using the Disk Resource Control (DRC) system, the system normally delays
restarting WFL jobs until the DRC system becomes active. The WFL jobs remain in
their job queues, and the system displays an RSVP message notifying the operator that
DRC initialization is underway. You can use the FS (Force Schedule) system command
to force a queued WFL job to restart before DRC is active. However, be aware that the
following statements in a WFL job can have unexpected effects if they execute before
DRC is active:

• CHANGE and REMOVE statements

If these statements specify usercoded files, they are ignored.

• COpy statement

If this statement creates a usercoded copy of a file, the copy proce~ds normally, but
DRC is not notified of the increased disk usage for that usercode. Therefore, it
might become possible for the actual disk usage of that usercode to exceed the limit
setinDRC.

For further information about DRC, refer to the A Series Disk Subsystem
Administration and Operations Guide.

Manually Restarting WFL Jobs

11-4

You restart a rwming WFL job with the RESTART (Restart Jobs) system command.
This command first discontinues the current job and its tasks, and then restarts the
new job as though a halt/load had occurred. For example, the job resumes execution
from the last point at which no offspring were in use. For further information about the
restart point, as well as about job and task side effects that you should plan for, refer to
"Designing WFL Jobs for Automatic Restarts" earlier in this section.

If the DSED program dump option is set for any task of the job, the RESTART command
causes the task to generate a program dump.

You can use the RESTART command to achieve some or'the effects of a halt/load without
interrupting the system. For example, if you need to perform maintenance on a disk
unit, you must terminate any jobs that have files open on that disk unit. You can set the
mix limit for the relevant job queue to 0, then apply the RESTART command to such a
job (rather than using the DS command). You can then hold the restarted job in the job
queue until pack maintenance is completed. When you increase the mix limit, the job
restarts from the last point where it had no tasks active~

You can also use the RESTART co~d to test ON RESTART statements in WFLjobs
without having to halt/load the machine.

If the WFL job had no checkpointed task in progress at the time of the RESTART
command, then the system automatically submits the job to ajob queue. Thejob
resumes execution whenever it is selected from that job queue.

8600 0494-010

Restarting Jobs and Tasks

If the WFL job was executing a checkpointed task at the time the RESTART command
was entered, the job does not restart immediately after the command. Instead, the
independent runner JOBRE~TART appears in the W (Waiting Mix Entries) system
command display. For information on how to respond to this waiting entry, refer to
"Restarting Checkpointed Tasks Automatically" later in this section.

Checkpoint Facility
The checkpoint facility provides the ability to restart a terminated task from any
selected point in its execution. Invoking a checkpoint causes the creation of a checkpoint
file, which records the state of the task when the checkpoint was invoked. Either a
statement in the task or a BR (Breakout) system command can invoke a checkpoint.
Later, you can use the RERUN statement to restart the task from the point at which the
checkpoint was invoked.

The main application of the checkpoint facility is the restarting of tasks that were
terminated by a system halt/load. The unique advantage of the checkpoint facility is
the ability to restart a task from a selected point during the task's execution. You can
invoke repeated checkpoints for the same task and restart the task from any of these
checkpoints.

ALGOL and COBOL(68) each provide a CHECKPOINT statement that enables a
program to invoke a checkpoint during its execution. Additionally, programs can
invoke a checkpoint by calling the exported MCP procedure CALLCHECKPOINT.
The CALLCHECKPOINT procedure can be invoked from any of the languages that
support libraries, including C, COBOL74, COBOL85, FORTRAN, FORTRAN77, NEwp,
and Pascal. You can also use operator commands to initiate a checkpoint for ALGOL, .
COBOL(68), and COBOL74 tasks. However, checkpoints cannot be initiated for BASIC,
WFL, or RPG tasks.

There are several restrictions on the. circumstances in which a checkpoint can be
invoked. One restriction is that the task must have been initiated from WFL, rather
than from a session or a user program. Another is that the task must not have any
offspring. These restrictions, and others, are discussed in detail in the following
subsections.

Programmatically Invoked Checkpoints

Designing a program to be checkpointed and successfully restarted involves more than
simply including a checkpoint invocation statement. You must verify that the program is
not using features that are disallowed for checkpointing. You must also plan for recovery
of data file contents and libraries.

86000494-010 11-5

Restarting Jobs and Tasks

Storing Information with a Checkpoint

Invoking a checkpoint causes the following types of information about the task to be
stored:

• The structure of the process stack, including information about the procedures that
have been entered, but have not yet exited, and the statement that is currently
being executed

• The current values of all objects declared by the task

• The current values of the task attributes of the task

Planning for File Recovery

The checkpoint facility does not store a record of the contents of files used by a task.
Instead, information is stored about the attributes of the files; that is, whether each file
is open and the current position of the record pointer for each file. You must plan for the
fact that file contents might have been modified, or files might have been removed or
replaced, between the time the task was checkpointed and the time it is restarted.

When the task is restarted, each data file must be on the same type of medium as it was
when the checkpoint was invoked. They do not have to be on the same physical units or
at the same locations on disk. They must retain the same basic characteristics, such as
blocking.

If a temporary disk file is open when the checkpoint is invoked, the file is locked and
assigned a title that begins with the letters CPO However, the system does not assign
this title to the TITLE attribute of the logical file; instead, the TITLE attribute retains
whatever value it was assigned by the program. If this file is later locked by the
program, the system enters the file in the disk directory under the title specified in
the TITLE file attribute. At restart, the process looks for the file only under the CP
directory, and the task is suspended with a NO FILE condition.

To prevent this situation, all files that will eventually be locked can be opened as
permanent files. That is, the file attribute PROTECTION can be set to SAVE. You can
design the task to remove this file later by closing the file with the PURGE option set.
Another method of avoiding this problem is never to lock a temporary file.

Planning for Library Recovery

11-6

It is possible to checkpoint a user task that is linked to a library, but only if the task
is not currently executing a library procedure. When a user task linked to a library is
checkpointed, the checkpoint records the values of the library attributes. However, the
checkpoint does not store any information about the state of the library or its contents.

When the user task restarts, the task is not immediately relinked to the library. The
library link is reestablished the first time the user task calls a library procedure.

86000494-010

Restarting Jobs and Tasks

You must be aware that the values of global objects in the library might have changed
since the user task was checkpointed. Global objects in the library might have changed
for any of the following reasons:

• The user task might have invoked a library procedure after the checkpoint and
before the user task terminated. This library procedure might have included
statements that modified the values of global objects in the library.

• If the library was frozen with a duration of TEMPORARY and a sharing option of
PRIVATE, then the library thaws when the user task terminates, and the system
removes the library process. The values of all global objects in the library are lost
when the library terminates. When the user task restarts, its first attempt to use
the library causes the creation of a new instance of the library.

• If the library has a sharing option of SHAREDBYALL, then other tasks have access
to the library and might make changes to global objects in the library after the
original user task is checkpointed.

Invoking the Checkpoint

The task invokes a checkpoint by executing a CHECKPOINT statement or by invoking
the exported MCP procedure CALLCHECKPOINT. These methods are discussed
separately in the following pages.

Using a CHECKPOINT Statement

ALGOL and COBOL(68) each provide a CHECKPOINT statement. You can create
multiple checkpoints by including a CHECKPOINT statement at several points in the
program. Later, you can restart the task from any of these checkpoints.

Each CHECKPOINT statement can specify the following options:

• Device option

Determines the family where the checkpoint-related files are to be created. A
value of DISK causes checkpoint files to be created on the family named DISK. A
value of DISKP ACK causes checkpoint files to be created on the family named
PACK. In ALGOL, but not in COBOL(68), you can specify PACK as a synonym for
DISKPACK

• Disposition option

Determines whether checkpoint files are saved. If the value is PURGE, then the
checkpoint files are removed if the task terminates normally. If the value is LOCK,
then checkpoint files are saved indefinitely. Later, you can use the checkpoint files to
restart the task even if it terminated normally.

The disposition option also determines if a checkpoint removes any previous
checkpoint files created by the same task~ If the disposition is PURGE, then any
previous checkpoints that were invoked with a disposition of PURGE are removed.
If the disposition is LOCK, then no previous checkpoints are removed.

8600 0494-010 11-7

Restarting Jobs and Tasks

• Exception action option

This option specifies that some particular statement is to be executed if the
checkpoint is not successful. This option is available only in COBOL(68). In
ALGOL, other means are used to· determine if the checkpoint was successful.

Examples

The following is an ALGOL example:

CHECKPOINT (DISK,PURGE);

The following is a COBOL(68) example:

CHECKPOINT TO DISKPACK WITH LOCK; ON EXCEPTION GO P2.

Using the CALLCHECKPOINT Procedure

11-8

A program can invoke a checkpoint by calling the MCP exported procedure
CALLCHECKPOINT. You can create multiple checkpoints by invoking .
CALLCHECKPOINT at several points in the program. Later, you can restart the task
from any of these checkpoints.

CALLCHECKPOINT is an integer procedure that receives four integer parameters, in
the following order: UTYP, CPTYP, CCODE, CPNUM, and RSFLAG. The following table
explains these parameters.

Meaning

Similar to the device option in a CHECKPOINT
statement. The UTYP parameter determines the family
where the checkpoint-related files are to be created. A
value of 1 causes checkpoint files to be created on the
family named DISK. A value of 17 causes checkpoint
files to be created on the family named PACK. These
values can also be represented by the VALUE function in
ALGOL as VALUE(DISK) and VALUE(PACK).

Similar to the disposition option in a CHECKPOINT
statement. The CPTYP parameter determines whether
checkpoint files are saved. A value of 0 is the same as a
disposition of PURGE: the checkpoint files are removed if
the task terminates normally. A value of 1 is the same as
a disposition of LOCK: the checkpoint files are always
saved indefinitely. Later, you can use the checkpoint files
to restart the task even if it terminated normally.

continued

86000494-010

continued

Parameter
Name

CCODE

CPNUM

RSFLAG

Procedure
result

Type

Integer

Integer

Integer

Integer

Input/Output

Output

Output

Output

Output

Restarting Jobs and Tasks

Meaning

The CPTYP parameter also determines if a checkpoint
removes any previous checkpoint files created by the
same task. If the disposition is 0 (PURGE), then any
previous checkpoints that were invoked with a
disposition of 0 or PURGE are removed. Ifthe
disposition is 1 (LOCK), then no previous checkpoints
are removed.

If the checkpoint is unsuccessful, the CCODE parameter
stores one of the values listed in Table II-I, "Checkpoint
Completion Codes."

CPNUM returns the number that the system assigned to
this checkpoint. The numbering scheme is explained
under IICreating Output Disk Files with a Checkpoint"
later in this section.

If the task was restarted from a checkpoint, then
RSFLAG returns a value of 1 the next time the task
invokes the CALLCHECKPOINT procedure. In this case,
CALLCHECKPOINT actually does not invoke a
checkpoint for the task. If the task invokes
CALLCHECKPOINT a second time, RSFLAG returns a
value of 0 and the checkpoint is actually invoked.

A value of 0 indicates a successful checkpoint. A value
of 1 indicates that the checkpoint was not taken, in
which case either the CCODE parameter or the RSFLAG
parameter should be nonzero.

The following are ALGOL statements that declare the CALLCHECKPOINT procedure
and invoke it:

LIBRARY MCPSUPPORT (LIBACCESS=BYFUNCTION, FUNCTIONNAME="MCPSUPPORT. ");

INTEGER PROCEDURE CALLCHECKPOINT(UTYP, CPTYP, CCODE, CPNUM, RSFLAG);
INTEGER UTYP, CPTYP, CCODE, CPNUM, RSFLAG;
LIBRARY MCPSUPPORT;

INTEGER CCODE_ACTUAL, CPNUM_ACTUAL, RSFLAG_ACTUAL, CPRESULT;

CPRESULT := CALLCHECKPOINT(VALUE(DISK),l, CCODE_ACTUAL, CPNUM_ACTUAL,
RSFLAG_ACTUAL);

8600 0494-010 11-9

Restarting Jobs and Tasks

11-10

The following COBOL85 program uses the explicit library interface to invoke the
CALLCHECKPOINT procedure. The invocation specifies a device option of PACK and a
disposition of PURGE.

IDENTIFICATION DIVISION.
PROGRAM-ID. CHECK-POINT.
ENVIRONMENT DIVISION.
iNPUT-OUTPUT SECTION.
FI LE-CONTROL.

SELECT ATTR-FILE ASSIGN TO DISK.
DATA DIVISION.
FILE SECTION.
FD ATTR-FILE.
01 ATTR-REC PIC X(80).

WORKING-STORAGE SECTION.
77 CHECKPOINTDEVICE PIC S9(11) USAGE BINARY.
77 CHECKPOINTTYPE PIC S9(11) USAGE BINARY.
77 COMPLETIONCODE PIC S9(11) USAGE BINARY.
77 CHECKPOINTNUMBER PIC S9(11) USAGE BINARY.
77 RESTARTFLAG PIC S9(11) USAGE BINARY.
77 RSLT PIC S9(11) USAGE BINARY.
77 VALUE-OF-PACK PIC S9(11) USAGE BINARY.
77 VALUE-OF-PURGE PIC S9(11) USAGE BINARY VALUE 0.

LOCAL-STORAGE SECTION •
.LD LD-CALLCHECKPOINT.
77 CHECKPOINTDEVICE PIC S9(11) USAGE BINARY.
77 CHECKPOINTTYPE PIC S9(11) USAGE BINARY.
77 COMPLETIONCODE PIC S9(11) USAGE BINARY.
77 CHECKPOINTNUMBER PIC S9(11) USAGE BINARY.
77 RESTARTFLAG PIC S9(11) USAGE BINARY.
77 RSLT PIC S9(11) USAGE BINARY.

PROGRAM-LIBRARY SECTION.
LB MCPSUPPORT IMPORT

ATTRIBUTE
FUNCTIONNAME IS "MCPSUPPORT"
LIBACCESS IS BYFUNCTION.

ENTRY PROCEDURE CALLCHECKPOINT
WITH LD-CALLCHECKPOINT
USING

GIVING

CHECKPOINTDEVICE
CHECKPOINTTYPE
COMPLETIONCODE
CHECKPOINTNUMBER
RESTART FLAG

RSLT.

8600 0494-010

Restarting Jobs and Tasks

PROCEDURE DIVISION.
INIT-PARA.

CHANGE ATTRIBUTE KIND

MOVE ATTRIBUTE KIND

PERFORM CHECKPOINT-PARA.
STOP RUN.

CHECKPOINT-PARA.

OF ATTR-FILE
TO PACK.
OF ATTR-FILE
TO VALUE-OF-PACK.

MOVE VALUE-OF-PACK TO CHECKPOINTDEVICE.
MOVE VALUE-OF-PURGE TO tHECKPOINTTYPE.

86000494-010

CALL CALLCHECKPOINT
USING

GIVING

CHECKPOINTDEVICE
CHECKPOINTTYPE
COMPLETIONCODE
CHECKPOINTNUMBER
RESTARTFLAG

RSLT.

II-lOA

Restarting Jobs and Tasks

Creating Output Disk Files with a Checkpoint

II-lOB

Invoking a checkpoint causes the creation of one or more of the following
checkpoint-related disk files: a checkpoint file,· a checkpoint job file, and checkpoint
temporary files. The following paragraphs explain what these files are, and the factors
that determine whether they are created.

A checkpoint file is always created if the checkpoint is successful. This file stores a
complete description of the checkpointed task and is titled according to the following
convention:

«usercode»CP/<job number>/<checkpoint number> ON <family name>

The usercode in the checkpoint file title is the usercode of the task. The job number is
the 4-digit mix number of the job that initiated the task. The checkpoint number is a
3-digit number used to distinguish this checkpoint from any other checkpoints executed
by the same task. The family name is taken from the value of the device option in the
CHECKPOINT statement.

If the disposition option is set to PURGE, the checkpoint number is always 0 (zero)
and each succeeding checkpoint with PURGE set removes the previous checkpoint file.
If the disposition option is set to LOCK, the checkpoint number starts at a value of 1
for the first checkpoint, and is incremented by 1 for each succeeding checkpoint that
is invoked with LOCK. If a task invokes some checkpoints with LOCK and some with
PURGE, then the "locked" checkpoints use ascending checkpoint numbers and the
"purged" checkpoints use a checkpoint number ofO.

A checkpoint job file is produced by the first checkpoint in the task that is invoked with
LOCK This checkpoint job file makes it possible to restart the checkpointed task after
its original job has terminated. Later checkpoints with LOCK do not produce ajob file,
nor do any checkpoints invoked with PURGE. The checkpoint job file is titled according
to the following convention:

«usercode»CP/<job number>/JOBFILE ON <family name>

Checkpoint temporary files store the contents of temporary files in use by the
checkpointed task. Checkpoint temporary files are created only in certain circumstances,
which are discussed under "Planning for File Recovery" earlier in this section. These
files are titled according to the following convention:

«usercode»CP/<job number>/F<file number> ON <family name>

In the checkpoint temporary file title, the file number is a 3-digit file number that starts
at 1 and is incremented by 1 for each temporary disk file.

The way the checkpointed task terminates can have an effect on the checkpoint-related
files. If the checkpointed task terminates abnormally and the last checkpoint has a
disposition of PURGE, the system retitles the checkpoint file to have the next sequential
checkpoint number and creates a checkpoint job file if none exists. If the checkpointed

8600 0494-010

Restarting Jobs and Tasks

task terminates normally and all checkpoints have a disposition of PURGE, then the
system removes all checkpoint-related files that were created for the task.

For tasks that invoke a large nwnber of checkpoints with the LOCK disposition,
the checkpoint nwnber is incremented up to 999 and then is recycled to 1 (leaving 0
undisturbed). When this happens, the checkpoint files previously numbered 1, 2, and so
on are lost as new ones using those numbers are created.

When a task restarts at a checkpoint that was not the last, subsequent checkpoints
invoked from the restarted task continue in numerical sequence from the one used for
the restart. Old high-numbered checkpoints are thus lost.

If a rerun is initiated and the original job number is in use by another task~ then a new
job number is assigned to the job. The titles of all checkpoint-related files for the task
are changed to refle~t the new job number.

Restrictions on the Use of Checkpoints

There are certain restrictions on the features that can be in use by a task when it is
checkpointed. These restrictions apply to both programmatically initiated checkpoints
and operator initiated checkpoints. Ifany of these features are in use, they prevent
a successful checkpoint. If a checkpoint fails, the task continues normally, but no
checkpoint files are created.

The following restrictions apply to the tasking environment of the checkpointed task:

• The task must have have been initiated by a RUN statement in a WFL job. The
checkpointed task must be the only in-use offspring of the WFL job at the time the
checkpoint is invoked.

• The task cannot be a remote task. That is, it must not be initiated on a BNA host
system other than that on which the job is running.

• The task must not have any offspring at the time of the checkpoint. However, the
task can have offspring at earlier, or later, points in its execution.

A checkpoint cannot be invoked from within the following types of procedures:

• An imported library procedure. The checkpoint cannot take place if an imported
library procedure is anywhere in the process stack. However, the checkpoint can be
invoked if the user process is merely linked to a library.

• A SORT input or output procedure. (SORT provides its own restart capability; refer
to theA Series System Software Utilities Operations Reference Manual.)

• A USE procedure in COBOL(68).

Several types of files cannot be open at the time of the checkpoint. However, the process
can close these files, take a checkpoint, and then reopen the files and continue to use
them. The following are the restricted types of files:

• Direct files

• Duplicated files

8600 0494-0 I a II-laC

Restarting Jobs and Tasks

11-100

• Files whose FILE STRUCTURE attribute value is not ALIGNED180

• ISAM files

• Multireel unlabeled tape files

• ODT files

• Remote files

• Paper tape files

• Port files

• Reversed tape files

Some restrictions also apply to printer output. No backup files that have a
PRINTDISPOSITION file attribute value of CLOSE, DIRECT, or EOT can be open. 'In
addition, the BDBASE option of the OPTION task attribute cannot be set.

The process cannot have an open Data Management System II (DMSII) set at the time
of the checkpoint.

No direct arrays can be in the process stack at the time of the checkpoint. A direct array
can be declared in a procedure in the program. However, the procedure must not have
been entered, or must have been entered and exited, before the checkpoint.

86000494-010

Restarting Jobs and Tasks

The checkpoint file cannot be created if doing so would cause the user's file usage on a
family to exceed the limits enforced for the user by the disk resource control (DRC)
system. For information about the disk resource control system, refer to the A Series
Disk Subsystem Administration and Operations Guide.

Determining Eligibility for Checkpoints

A task can determine whether it is probably eligible for checkpoints by interrogating the
CHECKPOINTABLE task attribute. This read-only Boolean attribute is assigned by
the system. The system assigns a value of FALSE if the task does not meet certain basic
requirements for a checkpointed task. However, a CHECKPOINTABLE value of TRUE
does not guarantee that a checkpoint will succeed. For details, refer to the discussion of
CHECKPOINTABLE in the A Series Task Attributes Programming Reference Manual.

Determining Whether the Checkpoint Succeeded

The checkpoint facility returns a value indicating the result of the attempted checkpoint.
This value is divided into the following fields:

[46:01]

[25:12]

[10:10]

[00:01]

If this bit is set, then the current task was restarted from this checkpoint.

If the checkpoint succeeded, this field stores the checkpoint number
assigned to the checkpoint files.

If the checkpoint failed, this field stores the completion code that
indicates why the checkpoint failed. For a list of the possible completion
codes, refer to Ta ble 11-1.

This is the exception bit. If this bit is set, then either the checkpoint did
not succeed or the process was restarted from this checkpoint.

In ALGOL, you can store the result value in a Boolean variable by invoking the
checkpoint facility as a function. This Boolean value can then be stored in areal variable,
and the various fields of the real variable can be conveniently interrogated.

In the following ALGOL example, BOOL is a Boolean variable and the other variables
are real.

BOOL := CHECKPOINT(PACK,LOCK);
REALRSLT := REAL(BOOL);
CPRESTART := REALRSLT.[46:01];
CPNUMBER := REALRSLT.[25:12];
CPCOMPLETION := REALRSLT.[10:10];
CPEXCEPTION := REALRSLT.[00.01];

In COBOL(68), the result value is automatically stored in a special register called
CHECKPOINT-STATUS. This is a predefined Level-2 variable that stores the result
value for the most recent checkpoint statement. If the task was restarted from this
checkpoint, then CHECKPOINT-STATUS stores a negative value. You can use MOVE
statements to extract the values of the checkpoint number, completion code, and
exception fields. .

8600 0494-000 11-11

Restarting Jobs and Tasks

The following example copies the value of CHECKPOINT-STATUS into a variable called
CPSTATUS. The example then extracts the values from various fields of CPSTATUS
and stores them in four separate variables. The variables CPSTATUS, CPRESTARFJ!
CPNUMBER, CPCOMPLETION, and CPEXCEPTION were all declared as 77-level
COMPPIC 9(11).

CHECKPOINT TO DISK WITH LOCK.
MOVE CHECKPOINT-STATUS TO CPSTATUS.
MOVE CPSTATUS TO CPRESTART [46:80:81].
MOVE CPSTATUS TO CPNUMBER [25:11:12].
MOVE CPSTATUS TO CPCOMPLETION [10:89:18].
MOVE CPSTATUS TO CPEXCEPTION [88:88:81].

You can tell whether a checkpoint was successful by observing the completion message
that is displayed. The following is an example of a successful completion message:

#1882 CHECKPOINT 11888/881 TAKEN @ F54:884E:8 @ (829980)*

The following is an example of the completion message for a checkpoint that failed:

11111 CHECKPOINT ABORTED: BAD IPC ENVIRONMENT @ (829988)*

Each completion message corresponds to one of the completion codes from field [10:10]
of the checkpoint result. The completion messages are listed in Table 11-1.

Table 11-1. Checkpoint Completion Codes

Completion
Code Completion Message and Meaning

11-12

o

1

2

3

4

5

CHECKPOINT #<mix number>/<checkpoint number> TAKEN

The checkpoint was executed successfully.

INVALID AREA IN STACK

SYSTEM ERROR

Completion errors 1 and 2 both mean that a system error occurred.

BAD IPC ENVIRONMENT

The process has offspring or was not initiated by a WFL RUN statement.

NO USER DISK FOR CP FILE

The family requested by the device optiOn in the checkpoint statement is not available.

10 ERROR DURING CHECKPOINT

An VO error occurred.

continued

8600 0494-000

Completion
Code

6

7

8

9

10

11

12

13

14

15

16

17

8600 0494-000

Restarting Jobs and Tasks

Table 11-1. Checkpoint Completion Codes (cont.)

Completion Message and Meaning

ROWS IN CP FILE> 1024

The process is too large to be successfully checkpointed.

DIRECT FILE NOT ALLOWED

The process has a direct file that is open.

TOO MANY TEMPORARY DISK FILES

The process has more than 998 temporary files.

ILLEGAL FILEKIND

The process is using a file for writing directly to a line printer or a card punch.

DUPLICATED FILE NOT ALLOWED

The process is using a duplicated file.

ILLEGAL FILE ORGANIZATION

The process is using an Index Sequential kcess Method (lSAM) file.

INSUFFICIENT MEMORY TO CHECKPOINT

Not enough memory is available to checkpoint the process.

OPEN REVERSED TAPE FILE NOT ALLOWED

The process is using a reversed tape file.

ICM AREA IN STACK

'The process is using a BNA Version 2 port file.

OMS AREA IN STACK

The process is using a OMS II data set.

DIRECT ARRAY IN STACK

The process has entered, and not yet exited, a block that includes a direct array
declaration.

SECURITY ERROR SAVING TEMPORARY DISK FILE

The process has a temporary file open under another usercode. This situation can
occur, for example, if both the follOYling are true:

• The process opened a permanent disk file that resided under someone else's
usercode.

• While the process had the file open, another process attempted to remove the
file, thus changing it to a temporary file.

continued

11-13

Restarting Jobs and Tasks

Completion
Code

11-14

19

20

21

22

23

24

25

26

28

30

32

34

36

37

Table 11-1. Checkpoint Completion Codes (cont.)

Completion Message and Meaning

STACKMARK

A system error occurred.

SORT AREA IN STACK

The process is using the SORT function.

IN USE ROUTINE NOT ALLOWED

The process has entered a USE procedure.

ILLEGAL CONSTRUCT

Either the process has opened a port file or there is operating system code in the
process stack. The latter can occur, for example, when a fault causes the execution of
an ALGOL ON statement.

BDBASE ILLEGAL

The BDBASE option of the OPTION task attribute has been set.

ILLEGAL FILESTRUCTURE

The process has an open file with a FILESTRUCTURE value for which checkpointing is
not implemented.

MULTI-REEL UNLABELED TAPE NOT ALLOWED

The process has opened a multireel.unlabeled tape file.

SURROGATE TASK NOT ALLOWED

The task was initiated on a BNA host other than that on which the job is running.

PROGRAM USES LIBRARIES

The process is executing an imported library procedure.

ROW SIZE TOO SMALL FOR CP FILE

The process stack is too large to fit in a row of the checkpoint file. The maximum size
of a process stack that can be checkpointed is approximately 22700 words.

OPERATOR CHECKPOINT REQUEST CANCELED

A checkpoint or restart was already underway.

BR REQUEST REJECTED

The BRCLASS task attribute value is NOBR.

OPEN BACKUP FILE WITH PRINTDISPOSITION = EOT NOT ALLOWED

OPEN BACKUP FILE WITH PRINTDISPOSITION = CLOSE NOT ALLOWED

continued

8600 0494-000

Completion
Code

38

40

41

42

43

44

45

Restarting Jobs and Tasks

Table 11-1. Checkpoint Completion Codes (cont.)

Completion Message and Meaning

OPEN BACKUP FILE WITH PRINTDISPOSITION = DIRECT NOT ALLOWED

Each of these three values means that the PRINTDISPOSITION file attribute has a
value not allowed for checkpoints.

ATTEMPT TO EXCEED TEMPORARY FILE LIMIT ON CP FILE

ATTEMPT TO EXCEED FAMILY LIMIT ON CP FILE

FAMILY INTEGRAL LIMIT EXCEEDED ON CP FILE

These three values mean that the checkpoint file cannot be created because doing so
would cause the user's file usage on a particular family to exceed the limits set by the
disk resource control system. For information about the disk resource control (DRC)
system, refer to the A Series Disk Subsystem Administration and
Operations Guide.

CHECKPOINT ABORTED: INVALID ENVIRONMENT IN STACK

The process has invoked and not yet exited a library procedure. Either the process is
currently executing code from that procedure, or it is executing code from some other
procedure that was invoked from the library procedure.

CHECKPOINT ABORTED: DISK TYPE MUST BE DISK OR PACK

A process invoked the exported MCP procedure CALLCHECKPOINT and passed a
value of other than 1 (disk) or 17 (pack) to the UTYP parameter.

CHECKPOINT ABORTED: CHECKPOINT TYPE MUST BE ZERO OR ONE

A process invoked the exported MCP procedure CALLCHECKPOINT and passed a
value of other than 0 (purge) or 1 (lock) to the CPTYP parameter.

Operator-Invoked Checkpoints

You can initiate checkpoints for a task by using the BR (Breakout) system command.
This feature is designed to allow you to checkpoint tasks when an external condition
prevents execution from continuing. For example, checkpointing a task just before
halt/loading the system preserves the work done up to that point.

The BR command, if it is completed successfully, has the same effect as a CHECKPOINT
statement in a program. All restrictions that apply to a programmed checkpoint also
apply to an operator-initiated checkpoint. For example, the task must have been
initiated from a WFL job and must not have any offspring. The task must be written
in ALGOL, COBOL(68), or COBOL74. For details about these restrictions, refer to
"Restrictions on the Use of Checkpoints" earlier in this section.

The programmer is responsible for designing a task to recover data file contents and
libraries after a restart. It can be difficult to design such recovery mechanisms without

86000494-010 11-15

Restarting Jobs and Tasks

knowing exactly when the checkpoint will take place. You can overcome this difficulty
through the use of the BRCLASS task attribute. This task attribute specifies whether
tl).e task currently allows an operator-invoked checkpoint.

Programmatically Preventing Operator Checkpoints

You can use the BRCLASS task attribute to specify how a task will respond to an
operator-invoked checkpoint. Through the use of repeated assignments to BRCLASS,
you can specify that operator checkpoints are allowed at some points in the task and not
at others.

You can disallow operator checkpoints by assigning BRCLASS a value ofNOBR (the
default). You can allow a single che,ckpoint, and cause the task to be discontinued
automatically after the checkpoint, by assigning BRCLASS a value of ONCE ONLY.
You can allow multiple checkpoints, and allow the task to continue normally after each
checkpoint, by assigning BRCLASS a value of MULTIPLE.

Note: Multiple operator checkpoints are possible only if BRCLASS is set to
MULTIPLE for both the job and the task. It is not sufficient to assign
MULTIPLE to the task alone.

The BRCLASS task attribute has effect only if the CHECKPOINTABLE task a,ttribute
is TRUE. "

Displaying the Checkpoint Status

11-16

You can use the < mix number> BR system command to determine whether a task is
eligible for an operator checkpoint and whether the task is currently being checkpointed
or restarted. The response has the following form:

TASK <mix number> <checkpoint status>

The following are possible responses if the task is not currently being checkpointed
or restarted. The phrase "CANNOT CONTINUE AFTER BR" indicates that the
BRCLASS task attribute has a value of ONCE ONLY. When BRCLASS = ONCEONLY,
the system automatically discontinues the process after the checkpoint completes.
However, the process can continue if the operator cancels the checkpoint with an OF
(Optional File) system command, as discussed"under "Operator Actions after the

"Checkpoint" later in this section.

TASK <mix number> IS NOT CHECKPOINTABLE BY THE OPERATOR
TASK <mix number> IS CHECKPOINTABLE
TASK <mix number> IS CHECKPOINTABLE (CANNOT CONTINUE AFTER BR)

86000494-010

Restarting Jobs and Tasks

The folloWing are resp~nses that indicate that a checkpoint has been requested or is
underway:

TASK <mix number> CHECKPOINT REQUESTED
TASK <mix number> CHECKPOINT REQUESTED (CANNOT CONTINUE AFTER BR)
TASK <mix number> CHECKPOINT RUNNING
TASK <mix number> CHECKPOINT RUNNING (CANNOT CONTINUE AFTER BR)

The following responses indicate that a restart is underway. In these responses, the
phrase "PROGRAM" means that the checkpoint was initiat~d by a CHECKPOINT
statement in the task. The phrases "ONCEONLY" and "MULTIPLE" specify the value
of the BRCLASS task attribute in cases where the checkpoint was operator initiated.

TASK <mix number>
TASK <mix number>
TASK <mix number>
TASK <mix number>

RESTARTING
RESTARTING (PROGRAM)
RESTARTING (ONCEONLY)
RESTARTING. (MULTI PLE)

The Y (Status Interrogate) system command displays more limited information about the
checkpoint status of a task. If a checkpoint or restart action has been requested for a
task, a line of the following form appears in the Y display:

CHECKPOINT STATUS : <status>

The possible < status> values are REQUESTED, RUNNING, or RESTARTING. These
values have the same meaning they do in the BR display.

Invoking a Checkpoint Interactively

You can invoke a checkpoint for a task by entering the < mix number> BR + form of
the BR command. If the checkpoint is accepted, it is executed with DISK as the device
option and PURGE as the disposition option. Checkpoint files are therefore created on
DISK family, with a checkpoint number of O.

If the BRCLASS task attribute value is ONCEONL Y, the task is discontinued after the
checkpoint.

The system might delay execution of the checkpoint request if it is not immediately able
to save the task stack correctly. For example, a checkpoint request cannot be completed
while the task is waiting on an event. If the checkpoint request is being delayed, a BR
command shows a checkpoint status of REQUESTED.

Canceling a Checkpoint Interactively

If the checkpoint status is REQUESTED, you can cancel the checkpoint request by
entering a BR command of the form < mix number> BR -. This command cancels the
request immediately.

86000494-010 11-17

Restarting Jobs and Tasks

Operator Actions after -the Checkpoint

As soon as the checkpoint has been taken successfully and the checkpoint file is entered
into the directory, the checkpoint function waits for an operator action. The following is
an.example of the W (Waiting Mix Entries) system commands display for such a process:

---Job-Task-Pri---Elapsed------- 5 WAITING ENTRIES ---------------------
6927\6928 50 1:44 (JASMITH) (JASMITH)OBJECT/ALGOL/CP ON SYSPK

OPERATOR CHECKPOINT #6927/000 TAKEN @ 112F:00EA:l @ (00000500)

You can determine the possible responses to this waiting state by entering a < mix
. number> Y command. The REPLY line of the Y command display lists one or more of
the following possible responses: .

• < mix number> DS

This command immediately discontinues the checkpointed task and its job. Any
user protection, such as EPILOG procedures, will not be considered during the DS
operation. This restriction ensures that neither the job nor the task will change the
state of any of its files after the checkpoint has been taken. This response is always
available after an operator-initiated checkpoint.

• < mix number> OF

This command cancels the checkpoint, removes the files created by the checkpoint,
and causes the checkpointed task and its job to continue their normal execution.
This response can be used if you decide that the checkpoint was not needed.

• < mix number> OK

This command causes the system to complete the checkpoint, and causes the
checkpointed task and its job to continue execution normally after the checkpoint.
Any files created by the checkpoint are saved. This response is allowed only if the
BRCLASS task attribute value was MULTIPLE.

Additionally, if the task was checkpointed in preparation for a halt/load, the ??PHL
(Programmatic Halt Load) system command can be used to initiate the halt/load. After
the halt/load, you can enter a command to restart the task.

Restarting a Checkpointed Task

11-18

A checkpointed task can be restarted automatically after a halt/load or explicitly with a
WFL RERUN statement.

8600 0494-010

Restarting Jobs and Tasks

Restarting Checkpointed Tasks Automatically

If a WFL job was executing a checkpointed task when a halt/load occurred, the job does
not immediately restart after the halt/load. Instead, an independent runner called
JOBRESTART appears in the W (Waiting Entries) system command display. The
following is an example of the entry:

---Mix-Pri---Elapsed------------ 2 WAITING ENTRIES -----------------
7082 50 :55 JOB JOBRESTART

RESTART PENDING 7119 DAILV/RUNNIT

In this example, DAILY/RUNNIT is the job that is pending restart, and its mix number
is 7119. The checkpointed task does not appear in the display. JOBRESTART is ajob
that was initiated by the system software to do the restarting, and its mix number is
7082. The following are the possible operator responses to this example and the effects
of the responses:

• 7082 OK

This command restarts the job and restarts the task at the last checkpoint.

• 7082 DS

This command discontinues the job and the task. Any checkpoint files are saved,
regardless of whether the disposition was LOCK or PURGE. The checkpoint number
of PURGE files is left as 0 (zero).

• 7082 QT

In this context, QT has the same effect as DS.

Initiating a Restart Explicitly

You can use a WFL RERUN statement to restart a checkpointed task. The checkpoint
files of the task to be restarted must have been permanently saved. Checkpoint files
are permanently saved if the checkpoint disposition is LOCK, if the job terminates
abnormally, or if the checkpoint is initiated by an operator BR command.

The RERUN statement can be included in a WFL job. Also, you can enter the RERUN
statement directly at the ODT, in which case the RERUN statement causes the creation
of a WFL job that does the restart. The RERUN statement has the following form:

RERUN <job number> /<checkpoint number>

In the RERUN statement, the job number is\the mix number of the job that initiated the
checkpointed task. ·The checkpoint number identifies the checkpoint that is to be used.

8600 0494-010 11-19

Restarting Jobs and Tasks

11-20

If the checkpointed task had a usercode, the checkpoint files are stored under that
usercode. To restart such a task, you must enter the RERUN command in ajob that'
specifies the usercode. The following can then be entered at an DDT:

?BEGIN JOB;USERCODE = <usercode> / <password>;
RERUN <job number> / <checkpoint number>

Following are some of the conditions that can prevent a successful restart:

• The usercode of the checkpointed task or its job is no longer valid.

• The program has been recompiled since the checkpoint was created.

• The system is now running on a different MCP release level than it was when the
checkpoint was created. For example, the system is now running a 4.0 MCp, and the
checkpoint was created on a system running a 3.8 MCP.

• The system is now using different intrinsics from when the checkpoint was taken.

• The checkpoint files are not present on DISK family or PACK family. The files must
be on one of these two families, regardless of any FAMILY equations entered with
the RERUN statement.

• The process was restarted on a different type of machine from the one where the
checkpoint was taken. For example, the process was checkpointed on an A 3 and
restarted on an A 9. '

If a rerun is initiated and the job number is in use by another job, a new job number
is assigned and the checkpoint files are automatically retitled to reflect the new job
number.

Table 11-2 lists the messages that can be displayed to show the result of the restart
attempt.

Table 11-2. Restart Messages

, Message Text

RESTART PENDING

RESTART INITIATED

RESTART ABORTED: MISSING CHECKPOINT FILE

RESTART ABORTED: 10 ERROR DURING RESTART

RESTART ABORTED: USERCODE NO LONGER VALID

RESTART ABORTED: OPERATOR DSED RESTART

RESTART ABORTED: OPERATOR QTED RESTART

RESTART ABORTED: MISSING CODE FILE

RESTART ABORTED: NOT ABLE TO RESTART

continued

8600 0494~010

Restarting Jobs and Tasks

Table 11-2. Restart Messages (cont.)

Message Text

RESTART ABORTED: INVALID JOB FILE

RESTART ABORTED: ERR COPYING JOB FILE

RESTART ABORTED: MISSING JOB FILE

RESTART ABORTED: FILE POSITIONING ERROR

RESTART ABORTED: WRONG JOB FILE

RESTART ABORTED: WRONG CODE FILE

RESTART ABORTED: BAD CHECKPOINT FILE

RESTART ABORTED: BAD STACK NUMBER

RESTART ABORTED: WRONG MCP

RESTART ABORTED: MISSING FAMILY MEMBER

RESTART ABORTED: MACHINE TYPES DIFFER

RESTART ABORTED: PAGED ARRAY PAGE SIZE HAS
CHANGED

RESTART ABORTED: FILE IS RESTRICTED

RESTART ABORTED: FILE IS ON A RESTRICTED
FAMILY

RESTART ABORTED: TAPE LABELKIND CONFLICTS
WITH FILEUSE

Automatic Retries
You can design a process to be restarted automatically if it is terminated because of an
error. This effect is achieved by assigning a value to the RESTART task attribute. The
value of this task attribute specifies the number of times the process is to be restarted
following an error termination. Execution of the restarted process begins with the first
statement in the outer block. After each restart, the RESTART task attribute value is
decremented by one. When the RESTART value is zero, the next error termination is
final.

When the process is restarted, no "EOJ" or "EOT" messages are displayed. Some
elements of the process survive the error termination and are reused These elements
are the pm, the code segment dictionary, and the base of the process stack. All task
attribute values of the original process are retained, including the mix number. In
addition, the values of any parameters the process received from its initiator are saved.

However, the values of all objects declared by the process are lost. These include
all variables, arrays, and so on, that are declared in the process. These objects are
re-created and reinitialized after the process restarts.

8600 0494-000 11-21

Restarting Jobs and Tasks

11-22

If the process has tasks, they are discontinued with a "PARENT PROCESS
TERMINATED" error each time the process has an error termination. However, each
time the process is restarted, it can execute the task initiation statements again and
create new tasks.

A process that was discontinued by an operator command does not restart, regardless of
the value of the RESTART attribute. The RESTART value also does not cause a process
to be restarted after a halt/load.

The RESTART task attribute is primarily useful in situations where the process might
be discontinued by a temporary hardware fault or where the process will receive
different input data after it restarts. If the process is attempting to do something invalid
or contradictory, repeated restarts are not helpful. The process terminates abnormally
each time. .

If the process includes a statement that assigns a value to RESTART, make sure that the
statement is not reexecuted after each restart. If the statement is always reexecuted,
then the value of RESTART can never reach zero and the process restarts infinitely.
The following is an example of an ALGOL program that would enter such a loop:

100 BEGIN
200 REAL X;
300 MYSELF.RESTART:= 4;
400 X:= X DIV 0;
500 END.

The following example shows how the program could be modified so that it would not
enter an infinite loop. The SWI task attribute is used as a flag to indicate whether the
process has been executed at least once.

100 BEGIN
200 REAL X;
300 IF NOT MYSELF.SW1 THEN MYSELF.RESTART := 4;
400 MYSELF.SW1:= TRUE;
500 X:= X DIV 0;
600 END.

In ALGOL, you can use the ON statement to prevent an abnormal termination from
occurring after a program fault. The ON statement has fewer applications than the
RESTART task attribute because it applies only to errors that would otherwise cause
the process to be discontinued with HISTORYCAUSE = FAULTCAUSE. However, for
these cases, the ON statement provides more flexible error handling than the RESTART
task attribute.

For more information about the ALGOL ON statement, refer to "Designing a Program
to Survive Faults" in Section lO~ "Determining Process History."

8600 0494-000

Section 12
Tasking across Multihost Networks

The linking of systems into a multihost network provides the capability for a type
of distributed processing. Each process executes on a single host system. However,
the various members of a process family can run on different host systems and can
communicate with each other in most of the same ways they could if they were all
running on the same system.

This type of distributed processing is referred to as remote tasking and is provided
by Host Services software. Remote tasking is supported across BNA Version 1,
BNA Version 2, and Open Systems Interconnection (OSD networks.

This section uses some specialized terminology to discuss remote tasking. The term
remote process is used to refer to a process that is initiated from one host system, but
runs on another host system. The host from which the remote process is initiated is
referred to as the local host. The host at which the remote process runs is referred to as
the remote host.

In the same way, the local operator is an operator at the system from which the remote
process is initiated. The remote operator is an operator at the system where the remote
process runs.

A remote process can be initiated from programs or from interactive sources such as
the operator display terminal (ODT), a Command and Edit (CANDE)· session, or a
Menu-Assisted Resource Control (MARC) session. Any messages generated by the
process are routed back to the local ODT and originating terminal. You can monitor and
control the remote process by transmitting ODT commands to the remote host system.

The following are reasons why you might want to initiate a remote process:

• To equalize the processor load on the various systems at an installation. If the local
system is overloaded, a process may be able to. run more quickly at a remote host.

• To make use of a program that is stored at a remote host. A process must run on
the same system where the object code file is stored. Therefore, initiating a program
that is stored at another system implies the creation of a remote process.

• To more efficiently access files that are stored on a remote host. A remote process
running on the remote host can access these files more efficiently than a local process
that accesses the files using Host Services Logical I/O. The result can be savings in
I/O time and elapsed time.

For further information abo~t Host Services, other than remote tasking, refer to
the A Series Distributed Systems Service (DSS) Operations Guide. For additional
information about Host Services Logical I/O, refer to the A Series I/O Subsystem
Programming Guide.

86000494-010 12-1

Tasking across Multihost Networks

Submitting Remote WFL Jobs

Any Work Flow Language (WFL) job can be designed to run on a remote host.
Additionally, a local operator can initiate jobs that are stored on remote hosts.

Running a Local WFL Job on a R.emote Host

In some cases, it might be convenient to store a WFLjob source program on the local
host, even though the job is to be run on a remote host. For these cases, you can include
an AT < hostname > specification at the start of the job.

You can submit the WFL job for execution by entering a START command at the local
host. If the AT hostname specification in the job requests a hostname that is not
currently available, the system rejects the job and displays the message "UNKNOWN
HOST SPECIFIED". If the requested hostname is available, the system transfers the
job to the remote host. The entry "JOB/HANDLER/<local hostname> " appears in the
mix at the remote host and indicates that a job has been transferred to the remote host.
The job compilation, job queuing, and job execution all take place at the remote host.

If the AT < hostname > phrase is used, the job cannot include a job parameter list, any
BINARY data specifications, or a null character within a quoted string. Also, if the WFL
source program is stored in a disk file, a question mark must be included before the END
JOB statement. If the WFL source program is submitted in array form, it should not
include any strings with embedded null characters; otherwise, the job receives a syntax
error at the remote host.

The following is an example of the job heading for ajob that is to run on a remote host
named CHICAGO:

?AT CHICAGO BEGIN JOB REMOTE/RUNNER;

Submitting a WFL Job Stored on a Remote Host

12-2

If a WFL source program resides on a remote host, you can submit the WFL program for
execution with the command AT < hostname > START <file title>. The following is an
example of this command:

AT CHICAGO START (SMITH)REMOTE/RUNNER ON DPMAST

The WFL program is compiled and executed on the remote host where it resides.
,~

A WFL job initiated in this way runs without a usercode in some circumstances. For a
discussion of these circumstances, refer to "U sercode Identity" later in this section.

86000494-010

Tasking across Multihost Networks

Meeting Remote Job Queue Requirements

You must be aware of the possibility that the job queue definitions on the remote host
. might be different from those on the local host. The job is enqueued on the remote host
just as it would be ifit were a local job submitted on that host. Hthejob does not qualify
for any of the queues, it is discontinued.

The job queuing algorithm is outlined in "Selecting the Queue for a Job" in Section 4,
"Tasking from Programming Languages."

Initiating Non-WFL Remote Processes

You can initiate remote processes from a local session or a local process. Several
restrictions apply to the features that can be used by the remote process.

Specifying the Remote Host

The HOSTNAME task attribute can be used to specify the remote host at which the
process is to run. This task attribute can be assigned through a task. equation or an
assignment to the task variable before initiation.

The HOSTNAME task attribute can be accessed from ALGOL, COBOL74, and WFL.
Therefore, remote processes can be initiated from any of these 1anguages. Forexample,
the fonowing ALGOL statements initiate a remote process:

~ROCEDURE RUNNERi
EXTERNALi

REPLACE T. NAME BY II OBJECT /RUNNIT ON DPPACK. II i
REPLACE T.HOSTNAME BY ISEATTLE."i
CALL RUNNER [T] i

CANDE and MARC also enable HOSTNAME to be included as a task equation fonowing
a RUN statement. The following is an example of a CANDE command that initiates a
remote process:

RUN RUNNITiHOSTNAME=MIAMI

The equivalent statement in MARC is as fonows:

RUN OBJECT/RUNNITiHOSTNAME=MIAMI

8600 0494-000 12-3

Tasking across Multihost Networks

Limitations on a Non-WFL Remote Process

12-4

The following restrictions apply to a remote process that is not a WFL job:

• The remote process must be an external process whose object code file is stored on
the remote host.

• The remote process can be passed no more than one parameter. The parameter
must be a real array of one dimension. The actual parameter must have a zero lower
bound. The system automatically chooses a passing mode of call-by-value for the
parameter.

• The WFL COMPILE statement cannot cause the resulting object code file to
be executed as a remote process. For example, suppose the compiler equation
COMPILER HOSTNAME = SFA15C is used. The compilation can run successfully
on the foreign host with a disposition of LIBRARY or SYNTAX, but is rejected if the
disposition is GO or LIBRARY GO.

If one of the preceding restrictions is violated, the initiating process is discontinued
with HISTORYCAUSE = 2 (PROGR.AM:CAUSEV) and HISTORYREASON = 31
(ILLEGALTASKXFERV). The following error message is displayed:

ILLEGAL HOST-TO-HOST TRANSFER OF TASK

Another restriction is that a WFL job cannot use global file assignments for remote tasks
initiated by the job. For example, the following sequence of statements is illegal:

FILE'IN{KIND=DISK,TITLE=NEW/INPUT/DATA);
RUN OBJECT/UPDATE;

HOSTNAME = ALBANY;
FILE CARD := IN;

Global file assignments have no effect when applied to remote tasks initiated from WFL.
The remote task executes normally, but the file used by the task does not receive any
of the file attributes specified for the global file in the WFL job. When the remote task
opens the file, the following nonfatal attribute error message is displayed:

[<hostname>] <mixno> ATTRIBUTE ERROR:<file internal name>.GLOBALFILESIRW

A remote task initiated from a local WFL job cannot read from any data specifications
in the WFL job. When the remote task attempts to read from a data specification,
it is suspended with a "NO FILE" condition and waits for a card reader file with the
requested title to appear. An RSVP message such as the following is routed back to the
local host:.

[ALBANY] 2079 RSVP {JASMITH)OBJECT/UPDATE ON USERPK. NO FILE 'CARD (CR)

A coroutine cannot use a continue statement to transfer control to a coroutine on a
remote host. By default, the PARTNER task attribute of a remote task is treated as

8600 0494-000

Tasking across Multihost Networks

MYSELF and the P ARTNEREXISTS task attribute of a remote task returns a value of
FALSE. In this case, any continue statement executed by the remote task has no effect.
Execution simply proceeds to the next statement in the remote task.

The MYJOB task variable of a remote task is treated as a reference
to the DSSSUPPORT library on the remote host. Any references to
MYSELF.EXCEPTIONTASK in the remote task are treated as references to
TASKING/MESSAGE/HANDLER, a task that is initiated by DSSSUPPORT on
the remote host. TASKINGIMESSAGEIHANDLER is discussed under "Displaying
TASKING/MESSAGE/HANDLER and TASKING/STATE/CONTROLLER" later in this
section. Any references to MYJOB.EXCEPTIONTASK in the remote task are treated
as references to the remote task itself.

.Any files accessed by a remote process are searched for on the remote host by default.
If the remote process uses a file on the local host, the HOSTNAME file attribute must
be assigned. For the remote process to open a remote file on the local host, the process
must also set its STATION task attribute to zero and assign the desired station name to
the FILENAME task attribute.

Host Availability

If a process attempts to initiate a task at a remote host that is nonexistent or
currently unavailable, the initiation fails, but the initiating process continues normally.
The task variable of the task stores a STATUS value of -2 (BADINITIATE), a
mSTORYTYPE of 4 (DSEDV), and a mSTORYCAUSE of 13 (NETWORKCAUSEV).
The HISTORYREASON value varies depending on the exact reason the host is
unreachable.

A pair of messages such as the following are displayed when this error occurs:

6749 TASK NOT INITIATED AT TESTSYS : ERROR - HOST NOT REACHABLE
6749 FOREIGN TASK INITIATION FAILED @ 103A:0001:4 @ (00000234)*

Initiating Pr·ocesses from a Remote Session

An alternate method of initiating a process on a remote host is to initiate it from a
remote CANDE or MARC session. You can establish a remote session by using the
Station Transfer feature provided by Host Services. A process initiated from such a
session is considered a local process because the session is under the direct control of the
remote host. The process is therefore not limited by any of the restrictions previously
discussed under "Limitations on aN on-WFL Remote Process" in this section.

For a detailed discussion of Station Transfer, refer to the A Series Distributed Systems
Services (DSS) Operations Guide.

8600 0494-000 12-5

Tasking across Multihost Networks

Interrogating the Remote Ancestry of a Process

A process can find out which host system it is running on by interrogating its own
HOSTNAME task attribute. This feature makes it possible to write a single program
that will ~e different actions when it is run on different systems.

A process can interrogate its remote ancestry by inspecting the ITINERARY task
attribute. This task attribute stores the hostnames of the host systems where each of
the ancestors of the process are running. This task attribute can be useful for cases
where the process needs to transmit information back to the user and thus needs to
know where the user is located.

Preventing User Identity Problems
The user identity of a process consists of several related task attributes, including
USERCODE, ACCESSCODE, CHARGE, and FAMILY Each system in a multihost
network has its own USERDATAFILE, which stores definitions of the users that are
allowed on the system. These definitions can be different on different host systems. For
a remote process to run successfully, it must be assigned an identity that is recognized on
the remote host.

Usercode Identity

12-6

The most basic user identity requirement is that a remote process must run with a
usercode that is allowed at the remote host, or it must run without a usercode.

If the remote process has a usercode, then the usercode must be one that is permitted as
a remote user at the remote host. Remote users are defined by REMOTEUSER entries
in the USERDATAFILE of the remote host. REMOTEUSER entries can specify in
detail the hosts that can submit a process with a particular usercode. The following is an
example of a REMOTEUSER entry at a remote host that allows processes with usercode
JASMITH to be initiated from the host named CHICAGO:

RU JASMITH OF CHICAGO

In addition to the REMOTEUSER entry, there must be a USER entry for the usercode
~f the process in the USERDAT AFILE at the remote host. A USER entry defines a
usercode and assigns usercode attributes to the us,ercode.

A system administrator at the remote host can cause remote processes that request
a particular usercode to be run under a different usercode instead. The substitute
usercode is referred to as a local alias usercode. A remote process assumes a local
alias usercode if the REMOTEUSER entry at the remote host specifies a local alias
for the requested usercode. The local alias usercode must also be defined by a USER
entry in the USERDATAFILE at the remote host. The following is an example of a
REMOTEUSER entry that specifies a local alias usercode:

RU JASMITH OF CHICAGO LOCALALIAS=JOHNSMITH

8600 0494-000

Tasking across Multihost Networks

The following is an example of a USER entry for the local alias:

USER = JOHNSMITH
MAXPW = 1
PASSWORD = ?
FAMILY DISK = SYSPK OTHERWISE DISK
IDENTITY = "ALIAS FOR JASMITH FROM CHICAGO"

Local alias usercodes are intended for use in cases where two different users on two
different systems happen to have the same usercode. Establishing local alias usercodes
allows these users to run processes on each other's systems, but prevents them from
accessing each other's files.

Alternatively, the system administrator can use a local alias usercode to cause many
usercodes from remote systems to be mapped to a single usercode at the local system.
This mechanism can be useful if the users need to have access to the same set of files.

If no local alias usercode is defined for the requested usercode, then the requested
usercode must itself be defined by a USER entry in the USERDAT AFILE at the remote
host. Note that one or more of the usercode attributes can have different values on the
remote host than they have on the local host. These differences do not prevent remote
process initiation.

In addition, the usercode can have passwords on the remote host that are different from
those defined for that usercode on the local host. If the remote process inherits the
usercode of the local process, the password is implicitly changed to a password that
is accepted at the remote host. However, if the remote process is explicitly assigned
a usercode at initiation time, the password specified should be one of the passwords
defined for the usercode at the local host. If the remote process changes its usercode
after it is initiated, the process must specify a password that is allowed on the remote
host.

A WFLjob is the only type of remote process that can run without a usercode. The
following are sources from which a remote WFLjob can receive a usercode, listed in
order of precedence:

1. Assignments to the USERCODE task attribute in the job attribute list.

2. The usercode of a session, if the job is submitted from a CANDE or MARC session.

3. The terminal usercode, if the job is submitted from an ODT. An operator can assign
a terminal usercode to an ODT by usmg the TERM (Terminal) system command.

4. The host usercode of the system, if the job is submitted from an ODT or a
nonusercoded MARC session. The host usercode is assigned by the HU (Host
U sercode) system command. You can create a nonusercoded MARC session by
logging on With an asterisk (*) at a SUPERUSER-capable station.

If a process does not receive a usercode from any of the first three sources listed, then
the host usercode is evaluated for SYSTEMUSER status. If the USER entry for the
usercode at the remote host assigns SYSTEMUSER status, then the job runs without a
usercode. Otherwise, the host usercode is used as the usercode for thejob.

86000494-010 12-7

Tasking across Multihost Networks

12-8

A local process cannot initiate a nonusercoded remote process. In the first place, any null
usercode explicitly assigned to a process is overridden at initiation time by inheritance
from the parent. For example, if the local process assigns a null USERCODE value to a
task variable, and then initiates a remote process with the task variable, then the null
USERCODE assignment is ignored. The task is initiated successfully, but inherits the
usercode of its parent. In the second place, if the local process is nonusercoded, and it
does not explicitly assign a usercode to the remote process, then the remote process
inherits a null usercode. However, the system cannot initiate a remote process that has a
null usercode, so the system displays error messages such as the following:

DISPLAY: 1807000 HOST SERVICES ERROR 17: USER ERROR - NO USERCODE
TASK OBJECT/ALGOL/TASK ON PACK NOT INITIATED AT PARIS : USER ERROR

- NO USERCODE
FOREIGN TASK INITIATION FAILED @ 109E:0001:4 @ (00012500)*

For more information about usercode definitions and the REMOTEUSER command,
refer to the A Series Security Administration Guide.

8600 0494-010

Tasking across Multihost Networks

Accesscode and Charge Validation

A remote process does not inherit the CHARGE task attribute value of its parent. If no
CHARGE value is explicitly assigned to the remote process, it runs without a charge
code. However, the remote process runs with a CHARGE value if one is explicitly
assigned by a statement in the parent process. Note that usercode definitions in the
USERDATAFILE can specify the range of CHARGE values that are valid for processes
with a given usercode. If the CHARGEREQ attribute is set in the usercode definition at
the remote host, then the remote task must have one of the CHARGE values defined by
the CHARGECODE usercode attribute at the remote host.

The ACCESSCODE task attribute also is not inherited by remote processes, but it can
be assigned. However, if it is assigned, it must be assigned a value that is allowed for the
remote process usercode on the remote host.

FAMILY Identity

A remote task does not inherit the FAMILY task attribute value of its parent. Instead,
the remote task inherits the FAMILY specification'in the usercode definition at the
remote host, if there is such FAMILY specification. If there is no FAMILY specification
in the usercode definition at the remote host, then by default the remote task runs with
a null FAMILY value.

The parent process can override the FAMILY specification at the remote host by
explicitly assigning a FAMILY value to the remote task, either with a task equation or
with an assignment to the task variable of the remote task.

86000494-010 12-8A

Tasking across Multihost Networks

Logging of Remote Processes
The system logging and job logging responsibilities for remote process families are
divided between the local host and the remote host.

System Log Entries

12-88

When a local process or· session initiates a remote process, the local system log does not
contain a log entry to record the event. However, if no other remote processes have
been active recently, then the system makes a log entry showing that a port file called
TASKPORT has been opened. The following is an example of an entry that can appear
in the local log if'a local process initiates a remote process. The initiating process in this
example had a mix number of 1799:

14:10:15 OPEN 1799 EXT NAME: TASKPORT.
INT NAME: TASKPORTS.
FILE ACCESS RULE = UNION

JOB 6717, TASK 6733)

JOB 4677, TASK 4677)

(ACTOR = STACK 0352,

(DECLARER = STACK 0165,

USE = IN KIND=PORT UNIT NUMBER 0
OPENTYPE: OFFER, POSITION: AT FRONT, MOTION·:

NONESUBFILE: 0009

All system log entries for the remote process are made in the system log at the remote
host. The remote process receives BOJ and EOJ log entries, even if it is actually a
task. The BOJ log entry shows the originating unit as 0 (zero) and also includes a line
called ITINERARY that specifies the host that initiated the process. The following is an
example of this log entry:

14:10:26 BOJ 9295 (WHSMITH)OBJECT/REPORTER ON DPMAST.
CODE COMPILED: FEB 25, 1987 15:07:00 BY ALGOL 37.

165
QUEUE: 0
ORIGINATING UNIT: 0
PRIORITY: 50
USERCODE: WHSMITH.
ITINERARY: SANTAFE

86000494-010

Tasking across Multihost Networks

Job Summaries for -Remote Processes

The job summary for a process family is printed on the system where the job runs. Thus,
for WFL jobs that include an AT < hostname > specification, the job summary is printed
at the remote host. The same is true for WFL jobs started by an AT < hostname >
START command. Any other independent remote processes, such as programs initiated
by an ALGOL RUN statement, also print job summaries on the remote host.

When a local job initiates a remote task, a single entry is made in the job summary
indicating that the remote task was initiated. No other job summary entries are made
for the remote task. The following is an example of this entry:

17:55:18 1708 DISPLAY: [MIAMI] 3382 BOT (JAS) OBJECT/UPDATE/FI LES.

86000494-010 12-9

Tasking across Multihost Networks

Resource Limits for Remote Processes
Remote processes do not inherit resource limits from their local parents. For example,
if a local job has a MAXPROCTIME limit,remote tasks do not inherit that limit.
Furthermore, the local job cannot be discontinued because of excessive resource usage
by its remote tasks. .

The only way resource limits are propagated across networks is by explicit assignment.
Thus, a local process can initiate a remote task and assign it a MAXPROCTIME value.
If the remote task uses more processor time on the remote host than MAXPROCTlME
allows, the remote task is discontinued.

For information about how resource limits are propagated in a local process family, refer
to Section 2, "Understanding Interprocess Relationships."

Interacting with Remote Processes
An operator at the local host system can use system commands to monitor or interact
with processes running on remote host systems. A user at a MARC or CANDE session
can also use MARC or CANDE commands to monitor or interact with processes running
on remote host systems.

Viewing Remote Process Messages

12-10

In general, any messages generated by a remote process are routed back to the local
host. These include "BOT" and "EOT" messages, display messages, accept messages,
and RSVP messages. The following are the only exceptions to this rule:

• WFL jobs initiated by an AT < hostname > START command. No messages are
returned to the local host for such ajob. (On the other hand, messages are returned
for WFLjobs that use anAT <hostname> specification in the job header.)

• Non-WFL independent processes. These include any remote processes initiated by
an ALGOL or COBOL74 RUN statement. Only a single "BOJ" message is routed
back to the local host, and the mix number displayed is always 0000.

Remote process messages appear in the MSG (Display Messages) system command
display at the local host, prefixed by the hostname of the remote host, as in the following
example:

---Mix-Time--------------------- MESSAGES ------------------------
* ** 19:33 [PARIS] 1057 EOT (JASMITH)OBJECT/REPORTER ON DPMAST.
* ** 19:25 [PARIS] 1057 BOT (JASMITH)OBJECT/REPORTER ON DPMAST.

86000494-010

Tasking across Multihost Networks

If the remote process was initiated from a CANDE or MARC session, the process
messages are also routed back to the CANDE or MARC session. The following is an
example of a CANDE command that initiates a remote task and the messages that are
returned:

RUN REPORTER ON DPMAST;HOSTNAME=PORTLAND
#RUNNING 6881 AT PORTLAND.
#[PORTLAND] 6881 BOT (JASM1TH)OBJECT/REPORTER ON DPMAST.
#ET=1:00.2 PT=0.0 10=0.2
#[PORTLAND] 6881 EOT (JASM1TH)OBJECT/REPORTER ON DPMAST.

The message "#ET = 1:00.2 PT = 0.0 10 = 0.2" is the termination message displayed for
the process by CANDE. The elapsed time, processor time, and I/O time displayed in this
message summarize the resource usage accumulated by the process on the remote host.

Note that the local termination message for the process appears before the EOT
message from the remote host. This occurs because there is a slight delay in the
forwarding of messages from the remote host.

Local Operator Control of Remote Processes

At the local host, you can control and interrogate remote processes by using system
commands prefixed with the phrase AT < hostname >. You can direct any system
command to a remote host in this way. However, security restrictions can be
implemented at the remote host to limit or prevent the execution of such commands.

The system provides a usercode for each system command that is directed to a remote
host. If the ODT has a terminal usercode, the terminal usercode is used. You can assign
a terminal usercode with the TERM (Terminal) system command. If there is no terminal
usercode, the host usercode is used. You can assign a host usercode with the HU (Host
U sercode) system command.

If a process uses the DCKEYIN statemen~ to submit a system command with anAT
< hostname > prefix, the system command is submitted under the usercode of the
process that executed the DCKEYIN statement.

For the command to be accepted at the remote host, the associated usercode must have a
USER entry and a REMOTEUSER entry in the U8ERDATAFILE at the remote host.
Otherwise, an error occurs at the remote host and the command is not executed. The
command is also rejected if no usercode is associated with it. (The command might not
have a usercode if neither a terminal usercode nor a host usercode is defined.)

If the REMOTEUSER entry defines a local alias usercode, the system command becomes
associated with the local alias usercode. In this case, the USERDATAFILE must include
a USER entry for the local alias usercode.

The remote host inspects the USER entry of the associated usercode to find out whethe~
SYSTEMUSER status is set for the usercode. If SYSTEMUSER status is set for
the usercode, then the system command is always allowed. If the usercode..is not a
SYSTEMUSER, then only a limited subset of the system commands can .be used.

8600 0494-000 12-11

Tasking across Multihost Networks

If the command usercode does not have SYSTEMUSER status, then the output of
mix display commands is filtered so that only processes running under the command
usercode are displayed. Likewise, commands that specify a particular process can only
be applied to processes running under the command usercode. The following are the
tasking-related commands that are available:

• AX (Accept)

• C (Completed Mix Entries)

• CU (Core Usage)

• DBS (Database Stack Entries)

• DS (Discontinue)

• DUMP (Dump Memory)

• FA (File Attribute)

• FR (Final Reel)

• ill (Cause EXCEPTIONEVENT)

• J (Job and Task Structure Display)

• LmS (Library Task Entries)

• MSG (Display Messages)

• MX (Mix Entries)

• OF (Optional File)

• OK (Reactivate)

• OT (Inspect Stack Cell)

• RM (Remove)

• SL (Support Library)

• SQ (Show Queue)

• ST (Stop)

• THAW (Thaw Frozen Library)

• TI (Times)

• Y (Status Interrogate)

MARC Control of Remote Processes

12-12

You can enter system commands in MARC and direct them to a remote host by including
the AT < hostname > prefix. The security checking that is done is the same as that done
for commands entered at the ODT. However, the usercode of the MARC session is used
as the command usercode. If the MARC session has no usercode, then the system uses
the host usercode.

8600 0494-000

Tasking across Multihost Networks

CANOE Control of Remote Processes

You can direct system commands to a remote host from a CANDE session by prefixing
the command with ?AT < hostname >. These system commands are subject to the same
restrictions as commands entered using AT < hostname > at an ODT. The uSercode
of the CANDE session, or its local alias, is inspected for SYSTEMUSER status at the
remote host and the commands are handled according to the results of this test.

Visibility of Remote Processes to Remote Operators

. A remote process is visible to an operator at the remote host in the same way as it would
if it were a local process. However, the remote process appears to be ajob, even if it
is actually a task. The following is an example of the Y (Status Interrogate) system
command display for a remote task:

STATUS OF JOB 1450/1450 AT 15:58:01-
PRIORITY = 80
ORIGINATION: UNIT 0
USERCODE: CYNTHIA
CHARGECODE: 6825
STACK STATE: WAITING ON AN EVENT
PROGRAM NAME: (CYNTHIA)OBJECT/UPDATER ON SYSPK

The "ORIGINATION" displayed is always "UNIT 0" if the process was initiated from a
remote host. (However, there are other circumstances that can also cause an origination
of "UNIT 0" to be displayed.)

The following is an example of how such a task might appear in the J (Job and Task
Structure) system command display. No job is displayed for the task.

1450 50 •• (CYNTHIA) (CYNTHIA)OBJECT/ALGOL/TASK ON SYS37

Displaying TASKING/MESSAGE/HANDLER and
TASKING/STATE/CONTROLLER

The networking software creates two special processes that handle initiation of
remote processes and communication between the remote processes and their local
parents. These processes are tasks initiated by the DSSSUPPORT library on the local
host and the remote host. Their names are TASKING/MESSAGE/HANDLER and
TASKING/STATE/CONTROLLER. One instance of each of these tasks appears in the
mix at a host as long as any remote processes or parents of remote processes are running
at the. host. These tasks also continue to appear in the mix for a few minutes after all
remote processes have terminated.

8600 0494~00 12-13

Tasking across Multihost Networks

Using Host Services-Supported Task Attributes

12-14

Host Services supports the majority of the task attributes discussed in this guide.
However, there are some task attributes that cannot be used across multihost networks.
If Host Services does not support a task attribute, then that task attribute cannot be
accessed by a process running on a different host system. For example, if a parent
process is running on one system and its task is running on another system, the parent
cannot access some of the task's task attributes.

The following list shows all the task attributes. Each task attribute supported by Host
Services is marked with an asterisk (*).

ACCEPTEVENT * ACCESSCODE * ACCUMIOTIME

* ACCUMPROCTIME APPLYLIST AUTORESTORE

AUTOSWITCHTOMARC BACKUPFAMILY * BDNAME

BRCLASS * CHARGE CH ECKPOINTABLE

* CLASS * COMPILETYPE * CONVENTION

CORE DATABASE DECKGROUPNO

DEPTASKACCOUNTING * DESTNAME * DESTSTATION

DISKLIMIT DISPLAYONLYTOMCS * ELAPSEDLIMIT

* ELAPSEDTIME ERROR EXCEPTION EVENT

EXCEPTIONTASK * FAMILY FETCH

* FILEACCESSRULE FILEACCOUNTING * FILECARDS

HISTORY * HISTORYCAUSE * HISTORYREASON

* HISTORYTYPE * HOSTNAME HSPARAMSIZE

INHERITMCSSTATUS INITPBITCOUNT INITPBITTIME

* ITINERARY * JOBNUMBER * JOBSUMMARY

JOBSUMMARYTITLE * LANGUAGE LIBRARY

L1BRARYSTATE L1BRARYUSERS LOCKED

* MAXCARDS * MAXIOTIME * MAXLINES

* MAXPROCTIME * MAXWAIT * MCSNAME

* MIXNUMBER MYPPB * NAME

NOJOBSUMMARYIO * OPTION ORGUNIT

OTHERPBITCOUNT OTHERPBITTIME PARTNER

PARTNEREXISTS PRINTDEFAULTS * PRIORITY

* RESOURCE RESTART RESTARTED

* SAVEMEMORYLIMIT * SOURCEKIND SOURCENAME

* SOURCESTATION * STACKHISTORY * STACKLIMIT

* STACKSIZE STARTTIME * STATION

* STATUS * STOPPOINT SUPPRESSWARNING

*SWI *SW2 *SW3

continued

86000494-000

Tasking across Multihost Networks

continued

*SW4 *SW5 *SW6

*SW7 *SW8 TAOS

TANKING TARGET TASKERROR

TARGET TASKERROR TASKFILE

TASKLIMIT TASKSTRING * TASKVALUE

TASKWARNINGS * TEMPFILELIMIT * TEMPFILEMBYTES

* TYPE * USERCODE VALIDITYBITS

* WAITLIMIT

In most cases, if Host Services does not support a task attribute, then any attempt
to access the task attribute through Host Services is ignored. No error results,
but the task attribute remains unchanged. A warning message is displayed if the
DSSSUPPORT library on the system was compiled with the DIAGNOSTICS option set.
However, if a process attempts to access the ACCEPTEVENT, EXCEPTIONEVENT, or
TASKFILE task attribute of another process across a multihost network, the accessing
process is discontinued.

It is possible for hosts running different software release levels to be linked in the
same network. When accessing the task attributes of a remote task, be aware of the
possibility that the remote host may be running an old version of Host Services that does
not support all the task attributes that the current version of Host Services does.

8600 0494-000 12-15

12-16 8600 0494-000

Part II
Interp.rocess Communication

8600 0494-000

8600 0494-000

Section 13
Understanding Interprocess
Communication

Interprocess communication, or IPC, is a voluntary exchange of information between
two or more processes. Interprocess communication is sometimes referred to as
interprogram communication. The latter term is avoided in this guide for two reasons.

First, a program is an artifact stored in a file that doesn't do anything. When the
program is initiated, a process is created, and the process can communicate with other
processes.

Second, the processes involved in interprocess communication are not necessarily
instances of different programs. They might be two different instances of the same
program, or they might be internal processes created by initiating procedures within the
same program.

If the distinction between programs and processes seems unclear to you, read Section 1,
"Understanding Basic Tasking Concepts," before proceeding any further in this section.

Information in a computer system is always stored in a particular form. For example,
to store information about whether a given condition is true or false, a process might
declare a Boolean variable. To store numeric data,. the process might declare an .
integer variable or real variable. To record a set of instructions that can be invoked
repeatedly, the process might declare a procedure. All of the things that can be declared
in processes can be thought of, in a general way, as "objects."

With this point in mind, you can see that IPC consists of processes making use of
objects declared by other processes. For example, if one process assigns a value of 3
to an integer variable decI8red in another process, this assignment is an example of
interprocess communication. If a process invokes a procedure declared by another
process, this procedure invocation is another example of interprocess communication.

Why should two processes need to have access to the same objects? The following are
some examples:

• In an electronic mail system. One way for such a system to work would be for each
user to initiate his or her own mail process. Themail processes could then use IPC
techniques to send messages back and forth.

• For transaction processing. For example, you might have a file that is updated by
many different online users. You can use IPC techniques to ensure that different
users' updates do not overwrite each other.

• To promote reuse of code. You might write a procedure that is useful in many
different applications. You can place the procedure in a library where it can be used
by many different applications.

8600 0494-000 13-1

Understanding Interprocess Communication

A Series systems provide a variety of IPC techniques. When you design applications that
use IPC techniques, there are three main decisions you need to make:

• The type of object that is to be shared

• The method by which the object is to be shared

• The means of synchronizing access to the shared object

A factor contributing to all of these decisions is programming language restrictions. Not
all types of objects, sharing methods, or synchronization methods are available in all
programming languages.

Objects Used in Interprocess Communication
The types of objects you use for IPC depends on the types and quantity of data or code
that are to be shared.

To exchange Boolean, numeric, or text data, it can be convenient to use the types
of variables in which you would normally store such information in a program. For
example, if the information to be communicated is an integer, you could store it in a level
77 BINARY elementary item in COBOL74, or in an INTEGER variable in ALGOL or
WFL. Also, arrays generally can be used for IPC.

For certain simple data types, you also have the option of using task attributes to store
the value. Tp.e operating system provides several task attributes as storage areas for use
by the application~ Refer to Section 14, "Using Task Attributes."

For communicating large volumes of textual data, you might want to use a port file.
Processes can read from and write to port files much as if they were physical files.
However, the port file exists only as a communication path between two or more
processes. Port files help to prevent ambiguity and timing problems by providing
separate input and output queue~ for each pair of communicating processes. For an
overview of port file capabilities, refer to Section 19, "Using Shared Files."

For code that is to be shared between processes, you can use a procedure declaration.
Information about sharing procedures is given in Section 15, "Using Global Objects;"
Section 17 , "Using Parameters;" and Section 18, "Using Libraries."

Methods of Sharing Objects

13-2

A Series systems provide several methods of sharing objects among processes.
Your choice among these methods is determined to a large extent by the way the
communicating processes are related.

For example, suppose that a WFL or ALGOL program initiates an internal procedure as
a task. Statements in the procedure are able to access any variables declared globally
to the procedure withiIi the' program. The parent of the task also has access to these
globally~declared objects, which therefore can be used to pass information between the
parent and one or more tasks. This method of sharing objects is discussed in Section 15,
"Using Global Objects."

8600 0494-000

Understanding Interprocess Communication

Another !PC method exists for communication between a process and its initiator.
This method is called tasking parameter passing. WFL, ALGOL, and COBOL74 are
able to specify most types of variables as parameters in process-initiation statements.
Depending on the passing mode used, the parameter can provide one-way or two-way
communication between the process and its initiator. ALGOL is also capable of passing
a procedure as a parameter to another ALGOL program or a Pascal program. This
makes parameter passing a viable method for sharing code as well as data. For further
information about parameter passing, refer to Section 17, "Using Parameters."

Processes belonging to the same process family can conveniently access each other's
task attributes by way of certain predefined task variables. Thus, a task can access
the attributes of its job by way of the MYJOB task variable. The task can access the
attributes of its parent and other ancestors by way of the EXCEPTIONTASK task
attribute. Any two tasks in the same process family can exchange information through
the task attributes of a common ancestor. Predefined task variables are discussed in
Section 2, "Understanding Interprocess Relationships."

One !PC method that does not require the communicating processes to be related in any
way is the library mechanism. A library is a type of process that stores procedures for
use by other processes. Libraries can be written in ALGOL, C, COBOL(68), COBOL74,
COBOL85, FORTRAN, FORTRAN77, NEwp, Pascal, and PLJI.

You can design libraries to have any of several levels of sharing properties. In the case
of SHAREDBYALL libraries, each process using the library accesses the same instance
of the library program. Each procedure exported by the library can access variables in
the library that are declared globally to the procedure. Processes using a shared library
can communicate by assigning and reading values of global variables in the library. For
further information about libraries, refer to Section 18, "Using Libraries."

Port files are another !PC tool that is available between unrelated processes. In the
case of port files, the sharing method is part of the design of the object itself. When one
process attempts to open a port file, the system searches for a matching process that
is attempting to open the other end of the port file. When the system finds a correct
match it estabIjshes the· port file link: between the processes. Port files can be used in all
A Series programming languages except WFL. WFL is excepted because it is not capable
of reading from or writing to any kind of file. For further information about port files,
refer to Section 19, "Using Shared Files".

Methods of Synchronizing Access
When two or more processes are able to update the value of a common data item,
the possibility arises that the updates can interfere with and overwrite each other.
An example is that of a variable that records the current balance of a customer
. account. Suppose the account has a current balance of $100. One process might
have responsibility for subtracting $10 from the account. Another process, running
simultaneously, might have responsibility for adding $15 to the account. The net result
should be a balance of $105. However, the actual results can be quite different.

8600 0494-000 13-3

Understanding Interprocess Communication

13-4

The problem arises because this type of update involves building on the value that is
already present. If more than one process updates the account, a sequence like the
. following can occur:

1. Process A reads the account balance ($100) into variable AI.

2. Process B reads the account balance ($100) into variable B1.

3. Process A subtracts $10 from variable AI, leaving $90.

4. Process B adds $15 to variable B1, leaving $115.

5. Process A assigns the value from A1 to the account balance, leaving a balance of $90.

6. Process B assigns the value ofB1 to the account balance, leaving a balance of$115.

In other words, process B can unintentionally delete the effect of the update performed
by process A. The result is that the customer balance is left at $115 instead of the correct
$105.

To prevent such situations from occurring, it is sometimes necessary that a process be
able to secure exclusive access to an object for the duration of the transaction. A Series
systems provide a special type of variable called an event for handling these and other
types of timing problems. You must use some means, such as global declarations,
parameters, or SHAREDBYALL libraries, to provide the communicating processes with
access to the event. You can then design the processes to use the event as a sort of flag
to signal the availability of another object, such as a variable or file.

Events can be declared and used in ALGOL, COBOL(68), and COBOL74. Certain
implicitly declared events can also be accessed by WFL. For further information about
events, refer to Section 16, "Using Events."

8600 0494-000

Section 14
Using Task Attributes

Certain task attributes exist only for the purpose of transmitting information between
different members of a process family. These attributes have no meaning to the system,
and thus can be used only for storing values to be read later. The following are the task
attributes that fall into this category:

• LOCKED

This Boolean-valued task attribute accesses the availability state of an event. For
further information, refer to "Using Implicitly Declared Events" in Section 16,
"U sing Events."

• SW1 through SW8

Each of these attributes stores a Boolean value.

• TARGET

This attribute stores an integer value.

• TASKSTRING

This attribute stores a string value.

• TASKVALUE

This attribute stores a real value.

In a more general way, all task attributes are instruments for interprocess
communication (IPC). After all, each task attribute stores information about the process
it applies to, and this information is visible to any other process that can access the task
variable. What distinguishes the task attributes in the preceding list is that they have no
meaning at all, except what is established by convention between two processes.

These task attributes provide the simplest means of IPC. There is no need to create and
define complex data structures, as all task attributes are predeclared.

Each of the attributes involved stores only a single Boolean or arithmetic value.
However, the values can be changed and read repeatedly during process execution.

A disadvantage to using these task attributes is that the task attribute names are fixed
and thus do not convey any information about what is being stored in the attribute.
Someone reading the program might have trouble understanding why the attribllte is
being used. By contrast, a variable can always be assigned a meaningful name.

Another disadvantage is that it generally takes more processor time to read or write a
task attribute than to read or write variables declared by the process.

For two processes to communicate using task attributes, one or both must have access
to a common task variable. If two processes belong to the same process family, they

8600 0494-000 14-1

Using Task Attributes

14-2

can always communicate by way of the MYJOB task variable. If two processes have a
common parent, they can communicate by way of their own EXCEPTIONTASK task
attribute. For further information about the task variables a process can access, refer to
Section 2, "Understanding Interprocess Relationships."

The task attribute most commonly used for IPC is TASKV ALUE, and its most common
use is in task equations. For example, you could use TASKV AL UE to instruct a program
whether to produce a printout. The program could contain the following statement:

IF MYSELF.TASKVALUE = 1 THEN F.KIND := VALUE(PRINTER)
ELSE F.KIND := VALUE(REMOTE);

If T ASKV AL UE has a value of 1, the program produces a printout; otherwise the
program displays its output at the user's terminal. You might use a statement like the
following to initiate the program and cause the program to produce a printout:

RUN REPORT/GENERATOR;TASKVALUE = 1

8600 0494-000

Section 15
Using Global Objects

In Section 1, "Understanding Basic Tasking Concepts," the concept of an internal
task was introduced. An internal task is created by a statement that initiates a single
procedure within a program. The capability of initiating internal tasks exists only in
WFL and ALGOL.

WFL and ALGOL share a similar type of program structure. Both languages allow you
to create blocks that can include declarations of objects for use within the block. Both
langUages allow you to nest blocks within other blocks. Both languages allow nested
blocks to use objects declared in the blocks they are nested within. These objects are
referred to as global objects.

Globally declared objects can be used to allow an internal task to communicate with its
parent or with other internal tasks of the same parent. Even widely separated members
of a process family can communicate with each other by way of global objects. For
example, sibling or cousin tasks could communicate, or a task could communicate with an
ancestor. For an introduction to the possible relationships in a process family, refer to
Section 2, "Understanding Interprocess Relationships."

Processes can communicate through a particular global object only if the processes meet
both the following rules:

• Each process is one of the following: . the process that executed the declaration of the
global object, or an internal task of that process, or an internal task of one of these
internal tasks, and so on.

• Each process must have been created by initiating a procedure that falls within the
scope of the declaration of the global object.

The scope of a declaration consists of all the blocks that have access to the object
declared. Conversely, the addressing environment of a block consists of all the objects
that can be used by statements in the block. The following subsections discuss the
scope of declarations in WFL and ALGOL, and give examples of related processes that
communicate through global objects.

Global objects can also be used in SHAREDBYALL libraries to provide communication
between unrelated processes. The use of global objects in libraries is discussed in
Section 18, "Using Libraries."

8600 0494-000 15-1

Using Global Objects

Communication through Global Objects in WFL

15-2

The types of blocks that can occur in a WFL job are the outer block and any
SUBROUTINE declarations in the job. The scope of a declaration in WFL is limited to
the following blocks:

• The block in which the declaration occurs

• Any blocks that are nested in the declaration block and that occur after the
declaration

The following WFL example illustrates the effects of these scope rules:

100 ?BEGIN JOB;
110 INTEGER OUTERINT1;
120 SUBROUTINE FIRSTSUB;
130 BEGIN
140 INTEGER FIRSTINT;
150 SUBROUTINE NESTEDSU8;
160 BEGIN
170 INTEGER NESTEDINT;
180 OUTERINT1 := 3;
190 FIRSTINT := 3;
200 NESTEDINT := 3;
210 END NESTEDSUB;
220 OUTERINT1 := 2;
230 . FIRSTINT := 2;
240 END FIRSTSUB;
250 INTEGER OUTERINT2;
260 OUTERINT1 := 1;
270 OUTERINT2 := 1;
280 ?END JOB

This example includes three procedures: the outer block of the job and two subroutines,
of which NESTED SUB is nested within FIRSTSUB. Each procedure includes integer
variable declarations. Additionally, each procedure that is within the scope of an integer
variable declaration includes a statement making an assignment to the integer variable.

Thus, the integer variable OUTERINTI can be used by statements in the outer block,
the FIRSTSUB subroutine, and the NESTEDSUB subroutine. This is because the scope
of a declaration includes the procedure it is declared in and all nested procedures. By
contrast, the integer variable OUTERINT2 cannot be used by statements in FIRSTSUB
or NESTEDSUB, because these subroutines are declared prior to OUTERINT2.

The integer variable FIRSTINT can be used by statements in FIRSTSUB, because
FIRSTINT is declared in FIRSTSUB; and by statements in NESTED SUB, because it is
nested in FIRSTSUB. However, FIRSTINT cannot be used by statements in the outer
block, because the outer block is not nested inside FIRSTINT.

The integer variable NESTEDINT can be used only by statements in NESTEDSUB,
because no other procedures are nested in NESTEDSUB.

86000494-000

Using Global Objects

The next example shows the use of global objects in WFL to provide an elementary type
ofIPC.

100 ?BEGIN JOB GLOBAL/DISPLAY;
110 CLASS = 0;
120 STRING MSG;
130 TASK Sl, S2;
140 SUBROUTINE SUBONE;
150 BEGIN
160 WHILE S2(STATUS) ISNT SUSPENDED DO
170 WAIT(l);
180 MSG := ACCEPT("ENTER A MESSAGE PLEASE");
190 S2(STATUS = ACTIVE);
200 END SUBONE;
210 SUBROUTINE SUBTWO;
220 BEGIN
230 MYSELF(STATUS = SUSPENDED);
240 DISPLAY(MSG);
250 END SUBTWO;
260
270 PROCESS SUBONE [Sl];
280 PROCESS SUBTWO [S2];
290
300 ?END JOB

In this example, two subroutines, SUBONE and SUBTWO, are initiated as
asynchronous tasks. Both subroutines fall within the scope of the string MSG, which
is declared in the outer block. SUBONE waits for SUBTWO to become suspended.
SUBTWO executes a statement that suspends itself. At this point, SUBONE resumes
execution and assigns an operator ACCEPT message to the MSG string. SUBONE then
changes the status of SUBTWO to ACTIVE. When SUBTWO resumes execution, it
displays the value of the MSG string.

This is a simple example, but even in this example it was necessary to take measures to
regulate the timing of the asynchronous tasks. For example, the statement at line 180
should execute before the statement at line 240; otherwise, the DISPLAY statement at
line 240 displays an empty value. This example uses assignments to the STATUS task
attribute to suspend and restart execution of the asynchronous tasks. Other timing
methods available in WFL include the LOCKED task attribute and various forms of the
WAIT statement. These timing methods are discussed under "Using Implicitly Declared
Events" in Section 16, "Using Events".

8600 0494-000 15-3

15-6 8600 0494-000

Section 16
Using Events

Shared objects and task attributes provide a relatively simple means of communicating
information if all the tasks involved are synchronous tasks. If the tasks in a process
family are all synchronous, then only one process is executing at a time. The order in
which processes access shared objects is therefore fixed.

However, in cases where asynchronous processes access the same object, the order in
which they access the shared objects is not fixed. This fact can create many unexpected
side effects in communication. For example, suppose two processes communicate a vital
bit of information by way of a shared integer variable. How is one process to know that
the other process has updated the variable, so that it is now ready to be read? ,

The answer is that a programmer must implement flags to indicate·whether a particular
variable is to be accessed at this time. You can implement many types of flags. For
example, a process could reset the value of a variable to zero after reading it. Another
process could be designed to write a new value to the variable whenever the variable
contains a zero. In this example, the zero value is being used as a flag to show that the
variable has been read and is ready to have a new value written into it.

One problem with these types of flags is that the processes involved have to keep
checking the flag periodically to see if it has been set. These repeated checks waste
processor time. Another problem is that, between the time that one process reads the
flag and the time it sets the flag, another process might have written to or read the flag.
The flag is, therefore, not completely reliable.

You can avoid both of these problems by using events. An event is a special type of object
that is used only for regulating the timing of asynchronous processes. A process can wait
for an event to assume a certain state, without using any processor time while it waits.
When the event assumes the desired state, the process resumes execution automatically.

Events can be declared in ALGOL and COBOL74 programs, but not in other languages.
Work Flow Language (WFL) jobs can wait on certain predeclared and imp~citly declared
events.

Events can be made available to tasks in the same way as other objects can. That
is, internal tasks can access events declared globally in their parents. An internal or
external task can be passed an event as a parameter.

An event consists of an identifier that has two states associated with it: the available
state and the happened state. The available state can be AVAILABLE or NOT
AVAILABLE. The happened state can be HAPPENED or NOT HAPPENED. These
values can be inspected or changed by any of several event-related statements that are
described in the following pages. .

The available state of an event is typically used to temporarily restrict access to a
particular object, so that only one process can access the object during a given period of

8600 0494-000 16-1

Using Events

time. The happened state is used to allow one or more processes to wait without using
any processor time while waiting.

The initial available state of an event is AVAILABLE. The initial happened state of ali
event is NOT HAPPENED.

Declaring Events
In ALGOL, an event declaration is similar to a simple variable deGlaration. The following
statement declares two events:

EVENTEDATA, EACCESS;

Events can be grouped in ALGOL as a one-dimensional event array. The following
example declares an event array:

EVENT ARRAY EVNT[1:12];

The elements of this array can be used wherever an event is allowed. For example,
EVNT[3] accesses the third event in the previous array declaration.

Events can be declared in COBOL74 as elementary or group items. The following
example declares an event as an elementary item:

77 E1 USAGE IS EVENT.

The following example declares a group item that contains two events and a
two-dimensional event array:

01 EGROUP USAGE IS EVENT.
03 E-l.
03 E-2.
03 E-3 OCCURS 5.

05 E-4 OCCURS 10.

Accessing the Available State

16-2

The available state of an event records whether the event is currently assigned to a
process. An event can only be assigned to one process at a time. If the event is currently
assigned to a process, the available state is NOT AVAILABLE. If the event is not
assigned to a process, the available state is AVAILABLE. Aprocure statement is one
that changes the available state from AVAILABLE to NOT AVAILABLE. A liberate
statement is one that changes the available state to AVAILABLE.

To prevent two processes in a: process family from accessing the same object at the
same time, you declare an event that can be used by all the processes that access the
object. The processes should be designed according to a common convention so that each

8600 0494-000

Usi ng Events

attempts to procure the declared event before accessing the shared object. If the event
cannot be procured immediately, the process should either wait for the event to become
AVAILABLE or proceed with other business until the event becomes AVAILABLE.
When a process is finished using the shared object, it should liberate the event and thus
make the shared object AVAILABLE for use by other processes.

This mechanism of protecting a shared object depends on the cooperation of all the
processes that access the object. The system is not aware of any link between the event
and the object it protects.

Furthermore, procuring an event does not prevent other processes from accessing the
event. It simply prevents other processes from directly procuring the event. These
other processes could execute statements to liberate the event and then procure it,
or execute statements that access the happened state. This fact allows considerable
flexibility in the use of events.

Procuring an Event Unconditionally

An unconditional procure statement is one that stops execution of the process until
the requested event becomes AVAILABLE. When the event becomes available,
the unconditional procure statement immediately changes the event back to NOT
AVAILABLE and allows the process to resume executing. If the requested event is
already AVAILABLE, then the unconditional procure does not stop execution of the
process; instead, the unconditional procure immediately changes the event to NOT
AVAILABLE and allows the process to continue executing.

The following ALGOL statement unconditionally procures the event El:

PROCURE (El);

The following COBOL74 statement has the same effect:

LOCK (El).

There is one situation that can cause an unconditional procure to continue waiting even
after an event becomes AVAILABLE. For details, refer to "Partially Liberating an
Event" later in this section.

Procuring an Event Conditionally

A conditional procure statement allows the process to continue execution if the
requested event cannot be immediately procured. The process makes one . attempt to
procure the event and, if the event is AVAILABLE, changes the available state to NOT
AVAILABLE. The conditional procure statement returns information that enables the
process to tell whether the conditional procure action was successful.

8600 0494-000 16-3

Using Events

The following ALGOL statement conditionally procures the event El and stores the
result in the Boolean variable BOOL. If the conditional procure succeeds, BOOL receives
a value of FALSE. If the conditional procure fails, BOOL receives a value of TRUE.

BOOl := FIX (El);

The following COBOL74 statement conditionally procures the event El. The AT
LOCKED clause specifies an action to be taken if the procure fails.

lOCK (El) AT lOCKED GO P2.

Liberating an Event

A liberate statement sets the available state of the event to AVAILABLE and sets the
happened state to HAPPENED. (For information about the happened state, refer to
"Accessing the Happened State" later in this section.) The process then continues
normally.

If another process was waiting to procure the event, that process procures the event and
continues execution. The available state returns to NOT AVAILABLE. If more than one
process was waiting to procure the event, then only one of the processes succeeds, and
the other processes continue to wait until the event is liberated again. The programmer
cannot predict which of the contending processes will procure the event. However, the
highest priority process is the one with the best chance of succeeding.

The following ALGOL statement liberates event El:

LIBERATE (El);

The following COBOL74 statement has the same effect:

UNLOCK (El) •.

Partially Liberating an Event

16-4

A partial liberate statement sets the available state of an event to AVAILABLE, but
leaves the happened state unchanged. The process that performs the partial liberate
statement continues execution normally. The partial liberate statement differs from a
liberate statement in that it does not cause waiting processes to resume execution. Any
processes that had previously executed a wait statement or an unconditional procure
statement will continue to wait indefinitely. However, because the partial liberate
statement changes the event to AVAILABLE, the event can be procured by procure
statements executed after the partial liberate statement.

You should be very careful when using the partial liberate statement. You need to
either cause or liberate the event eventually so that the processes that are waiting on
the event can resume. (The cause statement is discussed under "Causing an Event"

86000494-000

Using Events

later in this section.) However, because the partial liberate statement changes the
state to AVAILABLE, another process could procure the event before the first process
fully liberates it. Unless you design the code carefully, two different processes might
accidentally use the resource flagged by the event at the same time.

In ALGOL, the partial liberate statement is called FREE. The following is an example of
this statement:

FREE (El);

The partial liberate statement can also be used as a function that returns a Boolean
value. If the event is already AVAILABLE, a value of FALSE is returned. If the event is
NOT AVAILABLE,. a value of TRUE is returned, and the event is set to AVAILABLE.
The following ALGOL statement partially liberates event El and stores the result in
BOOL:

BOOl := FREE (El);

The partial liberate statement is not available in COBOL74.

Testing the Availability of an Event

An availability test returns a Boolean value that indicates whether the event is
AVAILABLE. If the available state is AVAILABLE, the test returns TRUE. If the
available state is NOT AVAILABLE, the test returns FALSE. The process continues
normal execution in either case; it does not wait for the event to become AVAILABLE.
The availability test does not make any change to the event and does not affect processes
waiting on the event.

The following ALGOL statement tests the available state of the event El:

WHILE AVAILABLE (El) DO •••

The availability test is not available in COBOL74.

Note that the availability test is not an adequate substitute for the conditional procure
statement. Thus, the effects of the following two statements are quite different:

FIX (El);
IF AVAILABLE (El) THEN PROCURE (El);

Suppose these statements are executed by a process called A. The first statement, FIX,
causes a conditional procure. This statement procures event El if it is AVAILABLE,
but abandons the procure and allows process A to continue running if El is NOT
AVAILABLE. The second statement attempts an unconditional procure if El is
AVAILABLE. However, there might be another process, hereafter referred to as B.
Process B might procure El after process A executes the availability test, but before

8600 0494-000 16-5

Using Events

process A executes the unconditional procure. In that case, process A would cease
execution until process B eventually liberated the event.

The lesson to be learned from this example is that the availability test should be used
only in cases where the process does not need to procure the event, but only needs to
determine whether the event is currently in use by another process. However, even
this use can cause efficiency problems if done with excessive frequency. Refer to "Buzz
Loops" later in this section for details.

Determining the Ownership of an Event

16-6

A process becomes the owner of an event when the process successfully procures that
event, and remains the owner until the event is liberated. A process can use the MCP
procedure EVENT_STATUS to determine whether that process is the current owner of
the event.

The EVENT_STATUS procedure is primarily useful in fault-handling code, EPILOG
procedures, and EXCEPTION procedures. In these contexts, the EVENT_STATUS
result enables the process to determine whether it shotdd liberate the event before
exiting a procedure, to make the event available to other processes. For further
information about EPILOG and EXCEPTION procedures, refer to "Using EPILOG and
EXCEPTION Procedures" later in this section.

Note: The EVENT_STATUS procedure is the only safe method of
determining the owner of an event. Unsafe NEWP programs that
manipulate events directly should be avoided, because the format
of events differs among A Series systems and is subject to change
without notice . . Use of the EVENT_STATUS procedure makes it
unnecessary to modify application programs when the event format
changes.

The following declarations can be inCluded in an ALGOL program to enable the
EVENT_STATUS procedure to be used:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);

REAL PROCEDURE EVENT_STATUS(EV);
EVENT EV;
LIBRARY MCPSUPPORT;

DEFINE LOCKOWNERF = [42:39] #; % Lock owner field in EVENT_STATUS result

8600 0494-000

Using Events

The program passes the event in question to the EV parameter of the EVENT STATUS
procedure. This procedure returns information about the event in the procedw.e result.
The format of this result is as follows:

Field

[42:39]

[3: 2]

[1: 1]

[0: 1]

Meaning

Stack number of the process that owns this event

Event usage

o = Normal event

2 = Interrupt attached

Availability state

o = AVAILABLE

1 = NOT AVAILABLE

Happened state

o = NOT HAPPENED

1 = HAPPENED

Note: The information in the EVENT_STATUS result reflects the state of
the event at a single moment in time. If other processes have access
to the event, ownership of the event could change between the time a
process calls EVENT_STATUS and the time the process reads the
result.

Assuming that EVENT_STATUS, the MCPSUPPORT library, and the LOCKOWNERF
field h8.ve been declared as shown previously, the following ALGOL statement can be
used to determine whether the current process owns an event:

IF PROCESSID = EVENT_STATUS(EVENTl).LOCKOWNERF THEN
BEGIN

% Take various appropriate actions
END;

Accessing the Happened State
A process can use the happened state of an event to inform: another process that some
expected condition has been fulfilled. A statement that sets the happened state to
HAPPENED is said to cause the event. A statement that sets the happened state to
NOT HAPPENED is said to reset the event. Every process that has visibility to the
event also has the right to cause or reset the event.

A process can also wait on an event, in which case execution of the process is suspended
until another process causes the event. A process that is waiting on an event does not
use any processor time. The waiting process cannot resume execution until the event is
caused by some other process. Any number of processes can wait on the same event.

8600 0494-000 16-7

Using Events

Processes that wait on the happened state and processes that wait on an unconditional
procure statement are in a similar situation. In both cases, the process can take
no further action until another. process modifies the event. However, the following
differences might make it more convenient to use the happened state in some cases and
the availability state in others:

• Causing the happened state reactivates all the processes that are waiting on the
happened state. However, liberating the available state reactivates, at most, one
process. Other processes attempting unconditional procures will continue. to wait.

• A single process can wait on the happened state of more than one event
simultaneously. If any of the events are caused, the process resumes execution. By
contrast, a single process can attempt to procure only one event at a time.

• The functions that wait on the happened state and functions that reset the
happened state can be used separately or together. By contrast, a function that
waits on the availability state of an event always resets the availability state at the
same time that it reactivates the process.

Causing ail Event

The cause statement sets the happened state to HAPPENED and reactivates all
processes that are waiting on the happened state of an event. Causing an event has no
effect on the available state. The process that performs the cause continues without
interruption.

Reactivating a process simply makes that process eligible for processor time. The
priority of the process, compared to other processes in the mix, determines how soon the
process resumes execution.

The happened state can be reset as soon as it is caused, if another process is waiting
on the event with a wait and reset statement. Refer to "Waiting On and Resetting an
Event" later in this section.

An ALGOL statement can cause only one event at a time. The following ALGOL
statement causes the event EVNT: .

CAUSE (EVNT);

A single COBOL74 statement can cause one or more events, as in the following example:

CAUSE EVNTl, EVNT2, EVNT3.

Implicitly Causing an Event

16-8

A secondary effect of liberating an event is that the happened state is set to
HAPPENED, and processes waiting on the happened state are reactivated. For more
information about the liberate statement, refer to "Liberating an Event" earlier in this
section.

8600 0494-000

Using Events

Causing and Resetting an Event

The cause and reset statement reactivates waiting processes and then returns the event
to NOT HAPPENED. If the event is already HAPPENED when this function is applied,
the effect is to reset the event to NOT HAPPENED.

The following ALGOL statement causes and resets the event EVNT1:

CAUSEANDRESET (EVNT1);.

The following COBOL74 statement causes and resets three events:

CAUSE AND RESET EVNT1, EVNT2, EVNT3.

Partially Causing an Event

The partial cause statement sets the happened state of an event without reactivating
any processes that are waiting on the event. The waiting processes cannot reactivate
until a later statement causes the event. In addition, any new processes that attempt to
wait on the event will immediately continue because the event is already HAPPENED.

The following ALGOL statement partially causes the event EVNT:

SET (EVNT);

The partial cause statement is not available in COBOL74.

Resetting an Event

The reset statement changes the happened state of an event to NOT HAPPENED. This
statement makes it possible to reuse an event after it has been caused. If the event is
not reset after it is caused, then any processes that try to wait on the event will continue
immediately instead of waiting.

The following ALGOL statement resets the event EDATA:

RESET (EDATA);

The following COBOL74 statement resets two events:

RESET EDATA, ECONTROL.

You can also reset the happened state with the statements discussed under "Causing and
Resetting an Event" earlier in this section or "Waiting on and Resetting an Event" later
in this section.

8600 0494-000 16-9

Using Events

Waiting on an Event

The wait statement suppresses execution of the process until another process causes the
event. If the happened state is already HAPPENED, then the wait statement has no
effect and the process proceeds immediately. The wait statement does not change the
happened or available states of the event.

The waiting process does not use any processor time. Nevertheless, the waiting process
is considered active, rather than suspended, and does not appear in the W (Waiting
Entries) system command display.

A waiting process is discontinued if it exceeds the time limit specified by the
W AITLIMIT task attribute.

The following is an ALGOL statement that waits on the event EVNTl. The COBOL74
syntax is identical, except that it terminates with a period rather than a semicolon:

WAIT (EVNT1);

Waiting on Time

A wait statement can also cause the process to wait for a specified number of seconds.
The wait statement implicitly causes the system to create an event. The system causes
the event after the specified time period. The actual time can be somewhat longer than
the requested time, depending on the priority of the process and how busy the processor
is.

The maximum time delay that a process can'request is 164926 seconds (about 46 hours).
If a wait statement specifies a longer period of time, the system reduces it to this
maximum value.

The following ALGOL statement waits for 123 seconds:

WAIT ((123»;

The WFL syntax is the same, except that only one set of parentheses is used.

In COBOL74, the statement appears as follows:

WAIT UNTIL 123.

Waiting on and Resetting an Event

16-10

The wait and reset statement has the same effect as the wait statement, except that the
happened state of the event is reset to NOT HAPPENED after the process reactivates.

8600049~00

Using Events

The following ALGOL statement waits and resets the event EW AIT:

WAITANDRESET (EWAlT);

The following COBOL74 statement has the same effect:

WAIT AND RESET UNTIL EWAlT.

Waiting on Multiple Events

The wait statement can specify a list of events. The process waits until anyone of
the events is caused. If anyone of the events is already HAPPENED when the wait
statement is executed, the process does not wait at all. The wait statement can return a
value that specifies which one of the events was caused. If more than one of the events
was caused, the value returned indicates the leftmost of the cauSed events in the list.

A wait and reset statement can also wait on multiple events. This statement resets to
. NOT HAPPENED the single event that reactivates the process.

The following ALGOL statement waits for 10 seconds, or until event E1 or E2 is caused,
whichever comes first .. The relative position of the event that reactivates the process is
stored in T. For example, ifE1 reactivates the process, T receives a value of2.

T := WAIT ((10), El, E2);

The following COBOL74 statement has the same effect:

WAIT UNTIL 10, El, E2 GIVING T.

Testing the Happened State

The happened test inspects the happened state of an event. This test returns a value of
TRUE if the event is HAPPENED and FALSE if the event is NOT HAPPENED.

Note that repeated happened t~sts are not the most efficient method of waiting on an
event. Refer to "Efficiency ConSiderations" later in this section.

The following ALGOL statement invokes the procedure PFILE if the event E1 is
HAPPENED:

IF HAPPENED (El) THEN PFILE;

The following COBOL74 statement has the same effect:

IF El THEN GO PFILE.

8600 0494-000 16-11

Using Events

Duration of the Happened State

You can use an event to flag either a momentary condition or an elapsed condition. A
momentary condition is one that is relevant only to the particular process or processes
that are already waiting for the condition. An elapsed condition is one that continues to
be relevant to other processes in the future.

You can flag a momentary condition by using statements that cause the event and then
immediately reset it. An event is immediately reset after being caused if either of the
following conditions are true: .

• The event was caused by a cause and reset statement.

• At least one of the processes waiting on the event used a wait and reset statement.

The program will be easier to understand and maintain if these methods of resetting the
event are not mixed. If you use a wait and reset statement, you should use a simple
cause statement. If you use a simple wait statement, you should use a cause and reset
statement.

You can flag an elapsed condition by using simple cause and wait statements. After the
event is caused, it remains in the HAPPENED state. When the elapsed condition ends, a
reset statement returns the event to the NOT HAPPENED state .

. Note that the use of separate reset statements automatically implies an elapsed
condition. Even if the reset statement is the first action executed after a cause or
wait statement, a significant interval of time can elapse before the reset statement is
executed .. Only through the use of wait and reset or cause and reset statements can you
flag a truly momentary condition.

Using Implicitly Declared Events

16-12

A process can access a number of types of events that are never explicitly declared.
Some of these are predeclared and always available. Others are created by the system in
response to certain forms of the wait statement.

Two predeclared events that are associated with every process are the exception event
and the accept event. You can access these events by using the EXCEPTIONEVENT .
and ACCEPTEVENT task attributes. A process can wait on, cause, or reset these
events by way of their associated task attributes. The following ALGOL statement waits
on the exception event of the process:

WAIT (MYSELF.EXCEPTIONEVENT);

The following COBOL74 statement has the same effect:

WAIT UNTIL EXCEPTIONEVENT OF MYSELF.

8600 0494-000

Using Events

The following WFL statement has the same effect:

WAIT;

The·accept event cannot be accessed in WFL. The ALGOL and COBOL74 syntax for
accessing the accept event parallels that used for the exception event. In addition,
COBOL74 allows the following special syntax for waiting on the accept event:

WAIT UNTIL ODT-INPUT-PRESENT.

You can access another predeclared event by using the LOCKED task attribute. This
attribute translates Boolean assignments into procure and liberate statements. Thus,
a statement that sets the LOCKED attribute of a process to TRUE has the effect of
unconditionally procuring the predeclared event. Setting LOCKED to FALSE liberates
the predeclared event. If LOCKED is already TRUE, then any processes that attempt
to set LOCKED to TRUE are queued until another process sets LOCKED to FALSE.
The main virtue of this task attribute is that it provides WFLjobs with an easy way of
protecting a resource, even though WFL jobs cannot access events directly.

Certain types of objects have event-valued attributes associated with them. These
objects include DCALGOL queues, Direct I/O buffers, port files, and remote files.
Processes can wait on these event-valued attributes just as if they were explicitly
declared events. For information about DCALGOL queues, refer to the A Series
DCALGOL Programming Reference Manual. For information about Direct I/O buffers,
port files, and remote files, refer to the A Series I/O Subsystem Programming Guide.

The WAIT statement in WFL can also include clauses that cause the job to wait until
specified task attribute values or file attribute values are attained. Refer to the A Series
Work Flow Language (WFL) Programming Reference Manual for full details.

Using Interrupts
An interrupt is a procedure that is associated with an event. Specifying an interrupt
allows a process to continue executing other statements at the same time that it waits on
an event. When the event is caused, control passes directly to the interrupt procedure.
When the interrupt procedure finishes, the process resumes execution where it left off.

An interrupt cannot be invoked using any of the standard procedure invocation
statements. An interrupt is entered only when the associated event is caused. Causing
an event invokes the interrupt even if the event is already in a HAPPENED state.
Therefore, there is no effective difference between using a cause statement or a cause
and reset statement to invoke the interrupt.

You can use attach and detach statements to specify with the event an interrupt is
associated with. Execution of the interrupt can be selectively allowed or suppressed
through the use of enable and disable statements. The statements that attach or detach
and enable or disable an interrupt can occur in any order, and do not affect each other.
For example, detaching an interrupt does not also cause it to be disabled. The initial
state of an interrupt is detached and enabled.

8600 0494-000 16-13

Using Events

An interrupt might not always execute immediately when its event is caused. Any of the
following three circumstances can delay execution of an interrupt:

• The interrupt is disabled.

• The process is waiting on an event. Any interrupts that are caused are queued and
executed when the process resumes.

• The processor is engaged in executing a higher-priority process.

Declaring Interrupts

The purpose of an interrupt declaration is to assign an identifier to the interrupt and
specify the statements that are to be executed when the associated event is caused.

An interrupt cannot be passed any parameters. Otherwise, it has the same addressing
environment as a procedure would have if it were declared at the same point in the
program. That is, in ALGOL the interrupt can access objects declared within the
interrupt and within any procedures that are declared glob~y to the interrupt.

In rare instances, you might want to restart the process at a point other than the point
at which the process was interrupted. You can achieve this effect in ALGOL with a bad
GO TO statement (that is, a GO TO statement that transfers control to a statement
outside the interrupt). However, COBOL74 does not allow a GO TO statement to
transfer control outside of the interrupt.

You should be aware of a side effect that arises from using a bad GO TO to exit an
interrupt. During execution of an interrupt, the system automatica1lyexecutes a
general disable on all other interrupts used by the process. A bad GO TO out of an
interrupt leaves the process with all interrupts disabled. You should include a general
enable statement to ·correct this situation. (Refer to "Using General Disable and Enable
Statements" later in this section.)

The following is an ALGOL example· of an interrupt declaration:

INTERRUPT BLOCK1;
BEGIN

DISPLAY (II ERROR II) ;
DISPLAY(IIINTERRUPT BLOCKl OCCURREDII);

END;

16-14 86000494-000

Using Events

In COBOL74, an interrupt declaration can occur only in the DECLARATIVES section of
the procedure division. The following is an example of a DECLARATIVES section that
includes an interrupt called INT-I:

DECLARATIVES.
INT SECTION.

USE AS INTERRUPT PROCEDURE.
INT -l.

DISPLAY II ERROR II •
DISPLAY IIINTERRUPT lOCCURRED II •

END DECLARATIVES.

Attaching or Detaching an Interrupt

The attach statement associates an interrupt with an event. If the interrupt is already
attached to another event, it is automatically detached from the old event and then·
attached to the new event. .

You can attach each interrupt to only one event .. However, you can attach more than one
interrupt to the same event. When the event is caused, the associated interrupts are
queued for execution in the reverse of the order that they were attached to the event.

It is possible to attach an interrupt to an event that is declared in a different process.
The interrupt executes as part of the process that declared it, even if it is associated with
an event in a different process. The interrupt declaration cannot be more global than
the event declaration, or an "UP LEVEL ATrACH" error results. This error occurs at
compile time if the compiler detects the problem. Otherwise, it occurs at run time.

The detach statement removes the association of an interrupt with an event. If the
interrupt is not currently associated with an event, the detach statement has no effect
and execution continues normally.

Note that if the interrupt is disabled, queued instances of the interrupt might have
accumulated. Detaching the interrupt, or attaching the interrupt to a different event,
causes these queued instances to be deleted. You can prevent this problem by enabling
the interrupt before detaching it from an event or attaching it to a different event.

The following are ALGOL statements that attach and detach an interrupt. The first
statement attaches the interrupt INTI to the event EI. The second statement implicitly
detaches the interrupt and then attaches it to the event E2. The third statement then
detaches the interrupt and leaves it detached.

8600 0494-000

ATTACH INT! TO El;
ATTACH INT! TO E2;
DETACH INT!;

16-15

Using Events

The following COBOL74 statements attach two interrupts to the same event and then
detach them:

ATTACH INT-I TO EI.
ATTACH INT-2 TO EI.
DETACH INT-I, INT-2.

Enabling or Disabling an Interrupt

There might be periods during process execution when it would be undesirable for
the interrupt to occur. These are generally periods when the process is· accessing
objects that are also modified by the interrupt. A programmer can selectively suppress
execution of interrupts through the use of enable and disable statements.

If an interrupt's event is caused while the interrupt is disabled, the interrupt is queued
for later execution. If the event is caused more than once, then multiple instances of the
interrupt are queued for execution. When a later statement enables the interrupt, the
queued interrupts are executed one at a time in reverse chronological order.

All interrupts are implicitly disabled while any interrupt is executing. That is, any
interrupts that are caused while an interrupt is executing are queued for later execution.
When the interrupt completes, the queued interrupts are executed one at a time in
reverse chronological order.

Because the queuing of interrupts creates substantial overhead for a process, you should
leave the interrupt in the enabled state whenever possible.

The following are examples of ALGOL statements that enable and disable an interrupt.
Each statement can specify only one interrupt:

ENABLE INTI;
DISABLE INTI;

The following are examples of COBOL74 statements that enable and disable multiple
interrupts:

ALLOW INTI, INT2.
DISALLOW INTI, INT2.

Using General Disable and Enable Statements

16-16

You can use a general disable statement to disable all the interrupts declared by the
process. Interrupts declared in other related processes, such as a parent or offspring,
are not affected. While a general disable is in effect, any interrupts whose events are
caused are queued for later execution.

To again enable the interrupts that were disabled by the general disable statement, use
a·general enable statement. For the most part, the general enable statement does not

8600 0494-000

Using Events

enable interrupts that were already disabled when the general disable statement was
entered. However, if a statement enables a specific interrupt while a general disable
statement is in effect, then the general enable statement also enables that interrupt.

The following ALGOL statements illustrate the interaction of specific and general
enables and disables for three interrupts, INTl, INT2, and INT3:

ENABLE INTl;
DISABLE INT2;
DISABLE INT3';
DISABLE;
ENABLE INT2;
ENABLE;

% Enabl es INTI.
% Disables INT2.
% Disables INT3.
% Disables INTl. INT2 and INT3 remain disabled.
% All three events remain disabled.
% Enables INTl and INT2. INT3 remains disabled.

The following are the general disable and enable statements in COBOL74:

DISALLOW INTERRUPT.
ALLOW INTERRUPT.

Waiting for Interrupts

You can use a special form of the wait statement to make the process wait for interrupts.
While the process is waiting for interrupts, any interrupt can execute; as soon as
the interrupt completes, the process returns to its waiting state. The only way the
process can proceed any further is if an interrupt executes a bad GO TO statement that
transfers control to a different statement outside the interrupt.

Waiting for interrupts can be useful for processes, such as message control systems
(MCSs), that are driven by input received over time from a variety of sources. However,
waiting on multiple events might be more efficient in these cases; refer to "Efficiency
Considerations" later in this section.

In ALGOL, the following wait statement causes the process to wait for interrupts:

WAIT;

The COBOL74 equivalent is the following statement:

WAIT UNTIL INTERRUPT.

Efficiency Considerations
The event and interrupt features provide a very efficient method of synchronizing
processes, provided that they are used as intended .. However, some misuses of these
features can cause performance problems. The following subsections describe some
possible problems and ways to avoid them.

8600 0494-000 16-17

Using Events

Buzz Loops

Several of the event-related statements allow a process to test the state of an event
without causing the process to wait. These are the happened test, the availability test,
the conditional procure statement, and the partial liberate statement.

These statements are designed for occasional, rather than frequent, use because each
execution of the statement uses processor time. In particular, looping continuously on
these statements is a very inefficient way of making a process wait. Such a loop is called
a buzz loop. The following is an ALGOL example of such a loop:

WHILE NOT HAPPENED (El) DO;

This loop repeats the happened test over and over until the event El attains a state of
HAPPENED. This loop causes two problems:

• It wastes processor time that could be devoted to executing other processes,
including the process that will eventually cause the event.

• On a single-processor system, it could become an infinite loop. Assume that another
process is supposed to cause event El. If the looping process has higher priority, it
will completely monopolize the processor. The second process never executes and
thus never causes event El.

You should replace the buzz loop with some form of the wait statement, which does not
use any processor time. The ALGOL statement WAlT (EI) could replace the loop shown
in the preceding example.

Preventing Excessive Interrupt Overhead

16-18

Use of interrupts increases the processor usage of a process. The processor overhead
is small if only one interrupt is used and the interrupt is not often caused. However,
the overhead is much greater when multiple interrupts are used and greater still when
interrupts are queued because an interrupt was disabled.

By contrast, a wait statement does not cause any continuing drain on processor
resources. A process that executes a wait statement is simply ignored until the
associated event is caused.

Because of these facts, wait statements should be used in preference to interrupts
where possible. This is particularly true where the process needs to wait on several
events simultaneously. In these cases, a statement that waits on multiple events is more
efficient than a statement that waits on multiple interrupts.

8600 0494-000

Using Events

Preventing Starvation Problems

A process that waits on multiple events must be carefully designed or there is a
possibility that some events might be overlooked. This possibility arises because the
value returned by the wait statement always indicates the leftmost of the events in
the event list that have been caused. For example, consider the following ALGOL
statement:

ENUM := WAIT (EI, E2, E3);

IfE1 is caused, ENUM receives a value of 1. IfE1 and E2 are caused, ENUM still
receives a value of 1. Now, suppose that E1 is an event that happens very frequently.
Each time the wait statement is executed and E1 has already happened, the wait
statement returns 1 as a value; thus, the process might never be notified that event E2
or E3 has happened. This situation is referred to as a starvation problem.

Strictly speaking, a starvation problem exists only if the repeated wait statement is not
fulfilling the needs of the 'particular application. The effect of the wait statement is to
give preference to the leftmost events in the event list. But if the leftmost events occur
infrequently, there will be no starvation. If you order the list so that the most important
events are on the left, then the starvation condition might even be desirable.

However, if you want to ensure that no event can be overlooked, then a simple solution
is to use happened tests after each execution of the wait statement. You could apply
a happened test to each event that is to the right of the event that was returned by
the wait statement. The following is an ALGOL example of a procedure that uses this
technique:

PROCEDURE EVENTWAIT;
BEGIN

BOOLEAN BOOl;
INTEGER ENUM;
DO BEGIN

END

ENUM := WAIT (EI, E2, E3);
CASE ENUM OF

BEGIN
1: BOOl := INPUTHANDlER (TRUE, HAPPENED(E2), HAPPENED(E3»;
2: BOOl := INPUTHANDlER (FALSE, TRUE, HAPPENED(E3»;
3: BOOl := INPUTHANDlER (FALSE, FALSE, TRUE);

END;

UNTIL BOOl;
END EVENTWAIT;

The procedure EVENTW AIT is responsible for waiting on three events, E1, E2, and E3,
which were declared globally. When at least one of these events is caused, EVENTW AIT
invokes another procedure called INPUTHANDLER and passes it Boolean values
indicating whether each of the three events has been caused. The ENUM value
indicates the leftmost event that has happened. The happened test is used for each of

8600 0494-000 16-19

Using Events

the events to the right of that event. You increase efficiency by minimizing the number
of happened tests.

INPUTHANDLER is expected to make whatever response is appropriate for each event.
INPUTHANDLER returns a Boolean value of TRUE if there is no need to wait on any
more events. INPUTHANDLER is also expected to reset the events that were caused,
so that it will be meaningful to wait on them again.

Note that the INPUTHANDLER invocation is used in this example for the sake of
simplicity. From an efficiency standpoint, such repeated procedure invocations are
rather expensive. It would be better to include the code that handles each event in the
EVENTW AIT procedure.

Discontinued Processes and Events
When a number of processes are being synchronized through the use of events,
unexpected problems can occur if one of the processes is discontinued. A process
might be discontinued by the system because of an error, or by an operator using a DS
(Discontinue) system command.

If the process has procured an event, but has not yet liberated it, then the event
remains procured when the process is discontinued. Any other processes attempting to
unconditionally procure the event will wait indefinitely.

Similarly, if the process was. supposed to execute a cause statement, but was
discontinued first, then the event is never caused. Other processes waiting on the event
will wait indefinitely.

The programmer can ignore these problems if none of the processes using an event is
ever likely to be discontinued. However, in environments such as a SHAREDBYALL
library, where a large number of user processes from various sources can access the
same event, the programmer might want to take special precautions. The following
subsections describe methods of dealing with these problems.

Using EPILOG and EXCEPTION Procedures

16-20

An EPILOG procedure is a special type of procedure that is available only in DCALGOL.
An EPILOG procedure is executed whenever the block that declares it is exited, even if
the block exit was caused by the process being discontinued. The EPILOG procedure
can be designed to perform cleanup actions, such as liberating or causing an event.

An EPILOG procedure can determine whether the block exit is normal or whether
the process is being discontinued, by inspecting the STATUS, mSTORYTYPE,
mSTORYCAUSE, and mSTORYREASON task attributes of the MYSELF task
variable. You can design the EPILOG procedure to take different actions, depending on
whether the block exit is normal.

Note that the EPILOG procedure can itself be discontinued and, thus, prevented from
completing all its cleanup functions.' For example, if you enter two DS commands for a
process, the first causes the EPILOG procedure to be entered. The second DS command

8600 0494-000

Using Events

discontinues the EPILOG procedure if it has not yet finished executing. This problem
should rarely occur if the EPILOG procedure is kept brief.

If you need to ensure that certain actions are always performed when a procedure is
exited abnormally, you can use an EXCEPTION procedure instead of an EPILOG
procedure. EXCEPTION procedures are available in DCALGOL, DMALGOL, and
NEWP. These procedures serve a similar function to EPILOG procedures. However,
an EXCEPTION procedure is executed only if the block that declares it is exited
abnormally, whereas an EPILOG procedure is executed even if the block exit is normal.
Block exits are considered abnormal in either of the following cases:

• If the block is exited because of a bad GO TO statement. This is a GO TO statement
that transfers control to a label outside the block.

• If the block is exited because the process was discontinued, either because of an
operator DS (Discontinue) system command or an internal fault.

Another important feature of EXCEPTION procedures is that you can prevent
them from being interrupted. To do this, you simply add the PROTECTED clause
to the EXCEPTION procedure declaration. The PROTECTED clause is available in
DMALGOL and NEwp, but not in DCALGOL. If the block that declares a protected
EXCEPTION procedure is exited abnormally, then the EXCEPTION procedure executes
in protected mode. A protected EXCEPTION procedure cannot be interrupted by the
DS (Discontinue) or ST (Stop) system commands, or by stack stretches. Note, however,
that the system marks an object code file as nonexecutable if it contains a protected
EXCEPTION procedure. An operator must use theMP <file title> + EXECUTABLE
form of the MP (Mark Program) system command or the SL (Support Library) system
command before the object code file can be executed.

If you want an EXCEPTION procedure to be executed before any block exit, normal or
abnormal, you can include an explicit call on the EXCEPTION procedure in the block.
The following is an example:

700 PROCEDURE PI;
710 BEGIN
720 FILE MYFILE(KIND=DISK);
730 PROTECTED EXCEPTION PROCEDURE CLEANUP;
740 BEGIN
750 CLOSE(MYFILE,LOCK);
760 END;

900 CLEANUP;
910 END;

The vertical ellipsis points in this example denote lines that are omitted because they are
not essential to the point being illustrated. If Pl exits normally, then the EXCEPTION
procedure CLEANUP is explicitly invoked by the statement at line 900. Note that in
this case, CLEANUP executes without protected status. If Pl exits abnormally, the
system automatically invokes CLEANUP and executes it with protected status.

86000494-010 16-21

Using Events

Using Timed Wait Statements

By including a time limit on a wait statement, you can make it possible for a process
to recover if a particular important event is not caused. For example, the following.
statement could be used in ALGOL:

ENUM := WAIT ((120),El);

This statement waits for 120 seconds or until event E1 is caused, whichever comes
first. For example, you might know.that ifE1 is not caused within 120 seconds, then
something has gone wrong. The process could check the value of ENUM to determine
if the wait timed out. If so, the process could check the STATUS task attribute of the
process that was supposed to cause the event and find out whether that process was
discontinued. (This type of checking is possible only if the process has access to the task
variable of the process that was supposed to cause the event.)

Using Conditional Procure Statements

There is no direct way to set a time limit on an unconditional procure statement. One
alternative is to use a conditional procure statement, such as the FIX statement in

. ALGOL or a LOCK statement with an AT LOCKED clause in COBOL74. If the
conditional procure fails, the process could attempt it again after a specified time period.
(Note that the process should not execute conditional procures in rapid succession, as
this causes the problem discussed under "Buzz Loops" earlier in this section.) If several
conditional procures fail, the process could check the status of other processes that might
have procured the event.

Determining Whether to Liberate an Event

16-22

If the state of an event is NOT AVAILABLE, then the process that most recently
procured the event can be referred to as the owner of that event. A process can use
the MCP procedure EVENT_STATUS to determine whether that process is the
current owner of an event. The EVENT_STATUS procedure is especially useful
in fault-handling code and in EPILOG and EXCEPTION procedures. Refer to
"Determining the Ownership of an Event" earlier in this section.

86000494-010

Using Events

Example of Event Usage
The following is a simplified example of an online application that has one driver process
and three servers. The driver process reads input from users and passes it on to
whichever server is not currently busy. The underlying assumption is that the user is
capable of submitting input faster than any single server can process it; this could be
the case if the server has to perform many time-consuming actions, such as disk l/Os,
to process the input. However, this example concentrates on the timing and resource
control aspects of this situation, and so the servers in the example do not really do any
useful work.

100 BEGIN
110 FILE TERM(KIND=REMOTE);
120 BOOLEAN FINISHED;
130 EBCDIC ARRAY MSG[0:71];
140 EVENT INMSG_EVENT, MSG_READ;
150 INTEGER I, READNUM;
160 TASK T1, T2, T3;
170
180 PROCEDURE SERVER;
190 BEGIN
200 BOOLEAN DONE;
210 EBCDIC ARRAY MSGCOPY[0:71];
220 WHILE NOT DONE DO
230 BEGIN
240 PROCURE(INMSG_EVENT);
250 REPLACE MSGCOPY BY MSG FOR 72;
260 CAUSE(MSG_READ);
270 IF MSGCOPY = "QUIT" THEN
280 DONE := TRUE
290 ELSE BEGIN
300 REPLACE MSGCOPY[68] BY MYSELF.MIXNUMBER FOR 4 DIGITS;
310 WRITE(TERM,72,MSGCOPY);
320 END;
330 END;
340 END;
350
360 PROCURE(INMSG EVENT);
370 PROCESS SERVER [T1];
380 PROCESS SERVER [T2];
390 PROCESS SERVER [T3];
400
4100PEN(TERM);
420 WHILE NOT FINISHED DO
430 BEGIN
440 WAIT(TERM.INPUTEVENT);
450 READ(TERM,72,MSG);
460 IF MSG = "QUIT" THEN
470· BEGIN
480 FINISHED := TRUE;
490 READNUM := 3;
500 END

8600 0494-000 16-23

Using Events

16-24

510 ELSE READNUM := 1;
520 I: = I;
530 WHILE I LEQ READNUM DO
540 BEGIN
550 LIBERATE(INMSG_EVENT);
560 WAITANDRESET(MSG_READ);
570 I := * + 1;
580 END;
590 END;
600
610 WHILE TI.STATUS GTR VALUE(TERMINATED) OR
620 T2.STATUS GTR VALUE(TERMINATED) OR
630 T3.STATUS GTR VALUE(TERMINATED) DO
640 WAITANDRESET(MYSELF.EXCEPTIONEVENT);
650
660 END.

The communication in this example takes place between the parent process and three
asynchronous tasks that are instances of procedure SERVER. The communication takes
place by way of the array MSG and the events INMSG_ EVENT and MSG _READ. Of
these, MSG is used to convey messages from the parent process to the servers. The
parent process uses INMSG _EVENT to inform the servers that there is a message
waiting to be read. A server uses MSG _READ to inform the parent that it has
successfully read the message, so the parent can now reuse the MSG array.

When this program is initiated, the driver process procures INMSG_ EVENT and
initiates three instances of the SERVER procedure. Each of these servers begins by
attempting to procure INMSG_ EVENT; since the driver has already procured this
event, all the servers wait.

The driver process then enters the loop on lines 420-590. Within this loop, the driver
waits for input from a user to appear in the remote file, and then reads the input
into MSG. In most cases, the driver then liberates INMSG _EVENT and waits on the
MSG READ event. When the driver liberates INMSG EVENT, one of the servers
succeeds in procuring the event and copies the contents of MSG to the local array
MSGCOPY. The server then causes MSG _READ, informing the driver that MSG is again
available for use as a buffer. The server then performs some processing on the input in
MSGCOPYand notifies the user of the result by writing a message to the .remote file.

If the input received from the user is the command QIDT, then the driver takes some
special actions. It liberates INMSG _EVENT and waits on MSG _ READ three times
without performing any more read operations. This allows the contents of the MSG
array to be read by each of the three servers. Each server recognizes the QIDT
command and terminates gracefully. Then the driver terminates as well.

Note that this program uses the available state ofINMSG _EVENT, but uses the
happened state ofMSG_READ. This difference reflects the different purposes for which
these events are used. The program alternates between two phases: a phase in which
the driver uses the MSG array, and a phase in which any single one of the servers can
use the MSG array. Causing MSG _READ initiates the phase in which the driver uses
MSG; liberating INMSG _EVENT initiates the phase in which one of the waiting servers
is allowed to use MSG.

8600 0494-000

Section 17
Using Parameters

A parameter is an object passed to a procedure by the procedure invocation statement.
Note that the term "procedure" is used here, as it is throughout this guide, to refer
to complete programs as well as to subroutines within a program. Most A Series
programming languages can pass parameters to procedures. Parameters can be of many
types, and in each language, mo~t or all of the types of available variables can be passed
as parameters.

Each parameter has two aspects: an actual parameter and a formal parameter. The
actual parameter is the parameter specified in the procedure invocation statement.
The formal parameter is the parameter as it is declared in the procedure that is being
invoked.

Parameters that are used in a process initiation statement provide an avenue of
communication between the initiating process and the new process. Such parameters
are referred to hereafter as tasking parameters.

Parameters that are used in a library procedure invocation statement provide another
type of interprocess communication. Such parameters are hereafter referred to as
library parameters.

The "Determining the Scope of Parameters" and "Parameter Passing Modes"
subsections of this section provide information that is relevant to both tasking
parameters and library parameters. The remainder of this section addresses only
tasking parameters. For further information about library parameters, refer to Section
18, "Using Libraries. "

Determining the Scope of Parameters
Section 15, "Using Global.Objects," defined the scope of a declaration as all the blocks in
a program that have access to an object declared in the program. That section explained
how the scope of a declaration extends through nested blocks in a program.

You can use parameters to pass an object to a procedure that does not fall within the
scope of the declaration of that object. This fact makes parameters a more general tool
for !PC than global objects. A parameter can increase the scope of an object in the
following ways:

• An object can be passed as a parameter to a procedure that is not nested within the
block that declares the object.

• A parameter can be passed to an external procedure, whether the procedure is a
passed external procedure, a library procedure, or a separate program.

86000494-000 17-1

Using Parameters

17-2

The objects a procedure can access, because the objects are declared in the procedure
or are declared globally to the procedure, are referred to as the direct addressing
environment of the procedure. The objects in the direct addressing environment,
together with any objects passed as parameters to the procedure, comprise the extended
addressing environment of the procedure.

If a procedure is passed as a parameter to another procedure, the invoked procedure
gains access to the passed procedure. However, the scope is extended only one way. The
passed procedure does not automatically gain access to objects declared in the invoked
procedure.

The following ALGOL example includes two cases where the scope of a declaration has
been increased by the effects of parameter passing:

Example

100 BEGIN
110
120 PROCEDURE P(Q);
130 PROCEDURE Q (R);
140 REAL R;
150 FORMAL;
160 BEGIN
170 REAL A;
180 A:= 2;
190 Q(A);
200 DISPLAY (STRING(A,*));
210 END;
220 .
230 PROCEDURE Y;
240 BEGIN
250 PROCEDURE X(Z);
260 REAL Z;
270 BEGIN
280 Z := Z * 2;
2913 END;
300
3113 P(X);
3213 END;
3313
3413 Y;
3513
3613 END.

Case 1

Procedure X cannot be directly invoked by a statement in procedure P, because the
declaration of procedure X occurs within procedure Y. However, the statement at line
310 that invokes procedure ~ passes procedure X as an actual parameter to the formal
parameter Q. Thus, the statement at line 190, which invokes the formal parameter Q,

8600 0494-000

Using Parameters

actually results in an invocation of procedure X. In this way, a statement in procedure P
is able to invoke a procedure outside the direct addressing environment of procedure P.

Case 2

·Real variable A cannot be directly accessed by a statement in procedure X because A is
declared within procedure P. However, the statement at line 310 passes procedure X as
an actual parameter to formal parameter Q of procedure P. The statement in procedure
P at line 190 then passes A as a parameter to procedure Q, thus making it possible for
procedure X to access A

Even after being passed to P, X does not automatically have access to objects declared in
P. Thus, X could not have accessed A if A had not been passed as a parameter to X.

Parameter Passing Modes
There are several different passing modes that govern the relationship between
the actual parameter and the formal parameter. The passing mode determines, for
example, whether assignments made to the formal parameter are reflected by the actual
parameter. The passing mode can also make a large difference in program performance
in cases where the actual parameter is an expression. The three types of passing modes
available on A Series systems are call-by-value, call-by-name, and ca11-by-reference.

The following subsections describe the three types of passing modes and explain how you
can specify which passing mode is used.

Call-by-Value Parameters

If a parameter is passed by value; the system evaluates the actual parameter when the
procedure is invoked and assigns the value to the formal parameter. Changes made
to the value of the formal parameter do not affect the value of the actual parameter.
Similarly, any changes made to the value of the actual parameter after procedure
invocation do not affect the value of the formal parameter.

An advantage to using call-by-value parameters is that they never result in the accidental
creation of a thunk. (Thunks are defined in the discussion of call-by-name parameters
that follows.) Another advantage is that they simplify program structure. Because the
actual parameter and the formal parameter do not affect each other, new values can be
assigned to either without creating unexpected side effects.

Call-by-Name Parameters

When a parameter is passed by name, the system never creates the formal parameter.
Instead, the system substitutes the actual· parameter for the formal parameter wherever
the formal parameter is mentioned in the procedure.

The effect of passing by name is simplest in cases where the actual parameter is a simple
variable. When the procedure accesses the formal parameter, the effect is as if the

8600 0494-000 17-3

Using Parameters

procedure were using a global variable. Any changes made to the value of the formal
parameter immediately affect the value of the actual parameter and vice versa. This
feature makes call-by-name parameters a useful means of communicating information
between an asynchronous process and its initiator.

When an actual parameter that is a constant or an expression is passed by name, the
compiler generates a thunk. A thunk (also known as an accidental entry) is a piece of
code that· evaluates the actual parameter and assigns the resulting value to the formal
parameter. The system substitutes the thunk for the formal parameter wherever the
formal parameter is mentioned in the procedure.

Thunks can be undesirable because they slow execution of the program and affect
the definition of the critical block. (Critical blocks are discussed in Section 2,
"Understanding Interprocess Relationships.") The programmer can prevent the
creation of a thunk by passing each element of the expression as a separate parameter .

. If a constant is passed by name, then whenever the value of the formal parameter is
read, the formal parameter returns the value of the constant. The value of the formal
parameter cannot change. An attempt to assign a value to the formal parameter results
in a run-time error.

The effect of passing an expression by name varies, depending on whether the
expression evaluates as a reference to a single object. For example, A[I] evaluates into
a reference to a single element of array A. In this guide, such an expression is referred
to as a simple expression. Other examples of simple expressions are the POINTER
function in ALGOL and references to character-based record fields. On the other hand,
an expression such as A + B does not evaluate as a reference to a single element. Such
an expression is referred to as a complex expression.

For a simple expression, the system passes a thunk that reevaluates the expression
each time the the parameter is used in the procedure. For example, suppose the actual
parameter A[I] is passed to the formal parameter F. At the time of the procedure
invocation, I has a value of 5. The formal parameter F becomes a reference to element 5
otarray A When F is read, it reflects the most recent value of A[5]. When F is assigned,
it changes the value of A[5]. If I is then assigned a value of 10, F becomes a reference to
A[lO]. Thereafter, reading or assigning F really accesses the value stored in A[lO].

For a complex expression, the system passes a thunk that reevaluates the expression
each time the formal parameter is read in the .procedure. However, it is impossible to
assign a value to the formal parameter; any attempt to do so results in a run-time error.

Call-by-Reference Parameters

17-4

When a parameter is passed by reference, the system passes the formal parameter
a reference to the place where the actual parameter is stored in memory. Passing a
parameter by reference is essentially the same as passing it by name, except that the
compiler does not create a thUnk for a call-by-reference parameter. Any expressions
passed by reference are, therefore, evaluated immediately and changed into simple
values or pointers to simple values.

8600 0494-000

Using Parameters

The effects of passing a parameter by reference are somewhat different in FORTRAN77
and FORTRAN than in other languages. In non-FORTRAN languages, the effects of
passing by reference are as follows:

• When a simple variable is passed by reference, the effect is the same as if it had been
passed by name. Changes made to the value of the formal parameter immediately
affect the value of the actual parameter and vice versa.

• In most languages, constants and complex expressions cannot be passed by
reference; a syntax error results from an attempt to do so. However, simple
expressions can be passed by reference. For a simple expression, the system passes
a reference to the location of the element. This location never changes, even if the
value of the subscript later changes. For example, suppose the actual parameter
A[I] is passed to the formal parameter F and I has a value of 5. Formal parameter
F becomes a reference to array element A[5]. Even if I is later assigned a different
value, F remains a reference to A[5]. When F is read, it reflects the most recent
value of A[5]. When F is assigned, it changes the value of A[5]. -

In FORTRAN77 and FORTRAN, the effects of passing by reference are as follows:

• For simple variables of type integer, real, double precision, complex, or logical, two
different kinds of call-by-reference passing are available. The default method is
known as call-by-value-result. With this method, the value of the actual parameter
is assigned to the formal parameter. Thereafter, assignments to the actual
parameter have no effect on the formal parameter. Assignments to the formal
parameter have no immediate effect on the actual parameter; however, when the
procedure is exited, the value of the formal parameter is assigned to the actual
parameter. The alternate method is true call-by-reference passing, in which the
formal parameter receives a reference to the actual parameter itself; changes to the
actual parameter are immediately visible to the formal parameter and vice versa.
The programmer can request true call-by-reference passing by enclosing the formal
parameter in slashes (f).

• For parameters that are character variables, arrays, or subprograms, the parameter
is always treated as a true caIi-by-reference parameter. Any changes to the actual
parameter are immediately visible to the formal parameter and vice versa.

• Constants of type integer, real, double precision, complex, or logical can be passed
by reference, but character or array constants cannot. The receiving procedure can
make assignments that change the value of the formal parameter, but the value of
the actual parameter is never updated to reflect the change.

• For an actual parameter that is a simple expression, the parameter is treated as
either call-by-value-result, or true call-by-reference, depending on the way the formal
parameter is declared. If the formal parameter is a character variable or array,
then the parameter is treated as a true call-by-reference parameter. If the formal
parameter is an integer, real, double precision, complex, or logical variable, then
by default the parameter is treated as call-by-value-result; however, if the formal
parameter is enclosed in slashes, the parameter is treated as true calI-by-reference.

• For an actual parameter that is a complex expression, the system evaluates the
expression and passes the value to the formal parameter. The receiving procedure
can make assignments that change the value of the formal parameter, but the value
of the actual parameter remains unchanged.

8600 0494--000 17-5

Using Parameters

Read-Only Parameters

A concept related to parameter passing modes is that of read-only parameters. The term
"read-only" refers, not to a passing mode, but to a restriction on the ways a parameter
can be used.

Formal parameter declarations in a Pascal program can include a CONST clause, which
causes a parameter to be treated as a read-only parameter. The CONST clause prevents
the receiving Pascal program or procedure from making any changes to the value of the
formal parameter. However, the CONST clause does not guarantee that the formal
parameter has a constant value. The formal parameter value can change because the
CONST clause does not affect the passing mode. If the actual parameter is passed by
name or by reference, then any changes made by the initiator to the value of the actual
parameter are immediately reflected in the value of the formal parameter.

Specifying the Passing Mode

You will seldom have the opportunity to choose among all three of these passing modes
for a particular parameter. The choice of passing modes is restricted on the basis of
several different considerations, including parameter type, language, and process type.

Though there are many different parameter types, these types fall into two basic
categories: word and descriptor. Boolean variables, integer variables, and real variables
are examples of word types. Strings, arrays, files, and other complex data structures are
descriptor types.

Word-type parameters can be passed by value, by name, or by reference.

In most languages, descriptor-type parameters must be passed by name or by reference.
Exceptions are Pascal, which allows descriptor type parameters to be passed by value,
and WFL, which can pass strings by value. Also, message control systems (MCSs) and
Host Services tasking can pass descriptor type parameters by value. Host Services
tasking makes it possible to write a program that passes an array to a remote process
by value. (Remote processes are discussed in Section 12, ~'Tasking across Multihost
Networks. ")

Each language imposes a different set of restrictions on the passing mode. For example,
ALGOL passes descriptor types by name or by reference and word types by name,
by reference, or by value. COBOL(68) and COBOL74 pass all library parameters
by reference, and parameters to tasks or bound-in procedures by reference or by
value. WFL passes parameters either by reference or by value. For details about these
language restrictions, refer to the programming language reference manuals.

One additional restriction is based on the process type. A statement that initiates an
independent process can pass parameters only by value, not by name or by reference.

Using Tasking Parameters

17-6

A Series software provides the application programmer with the ability to design a
program in one language that initiates a program written in a different language. The

8600 0494-000

Using Parameters

initiating program can even pass parameters to the initiated program. However, because
each language provides a different set of parameter types, the programmer needs to
understand which types of parameters are compatible.

The languages that can initiate a process and pass it parameters are ALGOL,
COBOL(68), COBOL74, and Work Flow Language (WFL).

The languages that can receive tasking parameters from another program are ALGOL,
C, COBOL(68), COBOL74, COBOL85, Pascal, and PL/I.

WFL jobs can also receive parameters. However, strictly speaking, these are
compile-time rather than tasking parameters because a WFL job is recompiled each time
it is submitted. ALGOL, COBOL(68), COBOL74, FORTRAN, and RPG can all submit
WFL jobs, but none of them can pass a parameter to the WFL job. Parameters can be
passed to a WFLjob only by a START statement. START statements can be submitted
in Command and Edit (CANDE) or Menu-Assisted Resource Control (MARC) sessions
or at an operator display terminal (ODT). START statements can also be submitted by
DCALGOL programs using the DCKEYIN function or by WFL jobs.

The remainder of this section discusses only tasking parameters and not WFL
compile-time parameters.

Whenever a process passes a tasking parameter, the system software checks that the
number of actual parameters the calling program passes matches the number of formal
parameters declared in the receiving program.

The system also compares each actual parameter with the matching formal parameter
to determine if they are of compatible types. The matching is done based on parameter
order rather than parameter names. It is permissible for the actual and formal
parameters to have different names.

In many cases, the system allows matches between similar, though not identical,
parameter types. For instance, an integer actual parameter can generally be passed to a
real formal parameter. Also, types that are, in effect, identical might have different
names in different languages. Details about which parameter matches are allowed by the
system software are given under "Matching Each Parameter Type" later in this section.

Information about how the passing mode is determined for tasking parameters is given
under "Resolving Passing Mode Conflicts" later in this section.

Special considerations for arrays passed as tasking parameters are discussed under
"Passing Arrays" later in this section.

Matching Each Parameter Type

By using Tables 17-1 and 17-2 at the end of this subsection, you can find out what
parameter types in a given language match particular parameter types in any other
given language. In the following discussion, the term original parameter refers to the
parameter you want to find a match for. The original parameter might be either an
actual parameter or a formal parameter. The term matching parameter refers to the

8600 0494-000 17-7

Using Parameters

17-8

parameter about which you are uncertain. The tables can help you decide what type the
matching parameter should be.

Note: The tables in this section document the tasking parameter-type
matching rules enforced by the system at process initiation time. If
you are initiating an imported library procedure, you should also be
aware of the library parameter matching rules discussed in Section
18, "Using Libraries." These rules are enforced by the operating
system at library linkage time. In general, the library parameter
matching rules are much stricter than the tasking parameter
matching rules.

Further, if you are initiated a bound-in procedure, you should be
aware of the binding parameter matching rules discussed in the
A Series Binder Programming Reference Manual. These rules are
enforced by the Binder during its run, and in general are still more

. limiting than the library parameter matching rules.

To use the parameter matching tables, you must start out knowing the following
characteristics of the original parameter: the language, the name of the parameter type,
and whether it is a formal or an actual parameter. For the matching parameter, you
must know the language in which it will be specified.

Begin by looking at Table 17-1. Table 17-1 is separated into three columns labeled
Language, Parameter Type, and General Type. Look down the Language column until
you find the language of your original parameter. Next, scan down the Parameter Type
column until you find the type of your original parameter. Next, look immediately to the
right, in the General Type column, and make a note of the general type that is listed
there.

In some cases, the general type shown is "(Unique)" instead of a word or a phrase.
This means that your original parameter is of a unique type that does not match any
other parameter type. For example, an ALGOL Boolean direct array can be passed only
to another ALGOL Boolean direct array. In this case, you can skip the rest of these
directions, because there are no other matching parameter types to be found.

Next, look at Table 17-2. This table extends over several pages and each page includes
one or more boxes; each box is a separate entry. A General Type heading appears at the
upper left of each box. The boxes appear in alphabetical order based on the General
Type headings. Look for the box whose General Type heading corresponds to the
general type you noted earlier.

Within the box you selected, scan down the Language and Parameter Type columns.
Make a note of the parameter types that are in the language you want to find out about.

At this stage, you can consider yourself finished if you want to be. You can take the
parameter types you noted and look in the appropriate programming language reference
manual for the detailed syntax of the parameter types. However, if this initial search did
not uncover any parameters in the language you want, or if you want a more complete
list of the possible parameter types for the matching parameter, then the information in
the Special Matches column of the box can help you to extend your search.

8600 0494-000

Using Parameters

The Special Matches column of each box can include up to three subentries that
list general types that match your original parameter, but only in some limited
circumstances. Examine each of the subentries that appears in the Special Matches
column of the box. The following are the possible subentries and their meanings:

• Matching Actuals

This is a list of general types that can match your original parameter, provided that
your original parameter is a formal parameter and you are looking for an actual
parameter to match it. If you are looking for an actual parameter, then make a
note of each of these general types. Then, for each of these general types, do the
following:

Go to the box that is labeled with the name of the specific general type.

Look at the main parameter group in the box and note any parameter types
shown that are in the language you want for your matching parameter.

Ignore any Matching Actuals, Matching Formals, or COBOL Matches subentries
that appear in the box.

• Matching Formals

This is a list of general types that can match your original parameter, provided that
your original parameter is an actual parameter and you are looking for a formal
parameter to match it. To translate these general types into specific parameter
types, follow the same steps that you did for the Matching Actuals subentry.

• COBOL(68 & 74) Matches

This is a list of general-type matches that are allowed if the calling program or the
receiving program is written in COBOL(68) or COBOL74. If this is the case, then
note the general types shown. For each general type, do the following:

Go to the box that is labeled with the name of the specific general type.

If the original parameter is in COBOL(68) or COBOL74, then note any
parameters shown in the Parameter Types column that are in the language
you want for your matching parameter. If the original parameter is not ·in
COBOL(68) or COBOL74, then note only the COBOL(68) and COBOL74 types
that appear in the Parameter Types column.

Ignore any Matching Actuals, Matching Formals, or COBOL Matches subentries
that appear in the box.

You now have a complete list of the possible parameter types for your matching
parameter. Refer to the various programming language reference manuals for the
syntax used to declare the parameter types you have listed.

N o~e that the programming languages restrict some parameter types so that they can be
used only as formal parameters or only as actual parameters. The syntax given in the
programming language reference manuals should explain any such restrictions.

The following examples illustrate the method for finding matching parameter types.

8600 0494-000 17-9

Using Parameters

17-10

Example 1

Suppose you want to pass a string value from a WFL job to an ALGOL program. Look at
the last line of Table 17-1. The parameter type shown is WFL STRING. The general
type shown is Real Array.

Now look through Table 17-2 until you find the box labeled Real Array. The main
parameter group in the box. includes two ALGOL types: REAL ARRAY and REAL
VALUE ARRAY.

In addition, the Matching Formals list specifies the general type integer array. Look
at the box labeled Integer Array. The main parameter group in the box includes the
following ALGOL types: INTEGER ARRAY and INTEGER VALUE ARRAY.

You now have a list offour different ALGOL parameter types. However, if you refer to
the ALGOL manual, you will find that value arrays are not allowed as formal parameters
(although they can be actual parameters). Therefore, a WFL STRING parameter can be
passed to two ALGOL types: REAL ARRAY or INTEGER ARRAY.

Example 2

Suppose you want to pass an 01 DISPLAY Group Item from a COBOL74 program to an
ALGOL program. Look through Table 17-1 until you find the line that says COBOL74
01 DISPLAY Group Item. The general type shown is EBCDIC Array.

Now look through Table 17-2 until you find the box labeled EBCDIC Array. The ALGOL
parameter types shown in the box are EBCDIC ARRAY and EBCDIC VALUE ARRAY.
Note these.

The Special Matches column of the box includes three general types as COBOL(68 & 74)
Matches: Hex Array, Integer Array, and Real Array. Go to the box for Hex Array. The
Parameter Types column includes two ALGOL types: HEX ARRAY and HEX VALUE
ARRAY. Note these. Repeat this process for each of the general types that you noted.

When you have finished this process, you have the following list of ALGOL formal
parameter types:

EBCDIC ARRAY
EBCDIC VALUE ARRAY
HEX ARRAY
HEX VALUE ARRAY
INTEGER ARRAY
INTEGER VALUE ARRAY
REAL ARRAY
REAL VALUE ARRAY

Of these, you should discard the value arrays because they cannot be used as formal
parameters. The matching parameter could be any of the remaining ALGOL types from
this list. '

8600 0494-000

Using Parameters

Example 3

Suppose you want to pass a real array from an ALGOL program to a COBOL74 program.
Scan through the ALGOL parameters in Table 17-1 until you find REAL ARRAY. The
General Type shown is also Real Array.

N ow look through Table 17-2 until you find the box labeled Real Array. One COBOL74
parameter is shown in the Parameter Types column: 01 BINARY Group Item. Note
this. Additionally, the box contains entries in the Special Matches column for Matching
Actuals, Matching Formals, and COBOL(68 & 74) Matches. You can interpret these
entries as follows:

• Matching Actuals

Ignore this entry, as your original parameter is the actual parameter. The matching
parameter you are looking for is a formal parameter.

• Matching Formals

The entry shown under this heading is Integer Array. Go to the box for Integer
Array. In the Parameter Type column, you find one COBOL74 parameter: 77
BINARY Elementary Item. Make a note of this.

• COBOL(68 & 74) Matches

The entries shown under this heading are EBCDIC Array and Hex Array.

Go to the box for EBCDIC Array. The COBOL74 parameters shown in the
Parameter Type column are 01 DISPLAY Group Item and 01 KANJI Group
Item. Make a note of these.

Go to the box for Hex Array. The COBOL74 parameters shown in the
Parameter Type column are 01 COMP Group Item and 01 INDEX Group Item.
Make a note of these.

When you finish this process, you find that the COBOL74 formal parameter can be of
any of the following types:

01 BINARY Group Item
01 COMP Group Item
01 DISPLAY Group Item
01 INDEX Group Item
01 KANJI Group Item
77 BINARY Elementary Item

Example 4

Suppose you want to pass a HEX DIRECT ARRAY from an ALGOL program to a
COBOL74 program. Look through Table 17-1 until you find the line that lists ALGOL
HEX DIRECT ARRAY. The General Type column lists "(Unique)" instead of the general
type. This means that HEX DffiECT ARRAY is a unique parameter type that can match
only a parameter of exactly the same type. In this case, there is no need for you to look
at Table 17-2.

8600 0494-000 17-11

Using Parameters

Table 17-l. Programming Language Parameter Types

Language Parameter Type General Type

ALGOL ASCII PROCEDURE REFERENCE ARRAY (Unique)

ALGOL ASCII ARRAY ASCII Array

ALGOL ASCII DIRECT ARRAY (Unique)

ALGOL ASCII PROCEDURE (Unique)

ALGOL ASCII STRING (Unique)

ALGOL ASCII STRING ARRAY (Unique)

ALGOL ASCII VALUE ARRAY ASCII Array

ALGOL BOOLEAN Boolean

ALGOL BOOLEAN ARRAY Boolean Array

ALGOL BOOLEAN DIRECT ARRAY (Unique)

ALGOL BOOLEAN PROCEDURE Boolean Procedure

ALGOL BOOLEAN PROCEDURE REFERENCE (Unique)
ARRAY

ALGOL BOOLEAN VALUE ARRAY Boolean Array

ALGOL COMPLEX (Unique)

ALGOL COMPLEX ARRAY Complex Array

ALGOL COMPLEX PROCEDURE (Unique)

ALGOL COMPLEX PROCEDURE REFERENCE (Unique)
ARRAY

ALGOL COMPLEX VALUE ARRAY Complex Array

ALGOL DIRECT FILE (Unique)

ALGOL DIRECT SWITCH FILE (Unique)

ALGOL DOUBLE Double

ALGOL DOUBLE ARRAY Double Array

ALGOL DOUBLE DIRECT ARRAY (Unique)

ALGOL DOUBLE PROCEDURE Double ProcecJure

ALGOL DOUBLE PROCEDURE REFERENCE (Unique)
ARRAY

ALGOL DOUBLE VALUE ARRAY Double Array

ALGOL EBCDIC ARRAY EBCDIC Array

ALGOL EBCDIC DIRECT ARRAY (Unique)

continued

17-12 8600 0494-000

Using Parameters

Table 17-l. Programming Language Parameter Types (cant.)

Language Parameter Type General Type

ALGOL EBCDIC PROCEDURE ARRAY (Unique)

ALGOL EBCDIC STRING (Unique)

ALGOL EBCDIC STRING ARRAY (Unique)

ALGOL EBCDIC VALUE ARRAY (Unique)

ALGOL EBCDIC PROCEDURE REFERENCE (Unique)
ARRAY

ALGOL ENTITY REFERENCE (Unique)

ALGOL ENTITY REFERENCE ARRAY (Unique)

ALGOL EPILOG PROCEDURE (Unique)

ALGOL EVENT Event

ALGOL EVENT ARRAY Event Array

ALGOL FILE File

ALGOL FORMAT (Unique)

ALGOL HEX ARRAY Hex Array

ALGOL HEX DIRECT ARRAY (Unique)

ALGOL HEX PROCEDURE (Unique)

ALGOL HEX STRING (Unique)

ALGOL HEX STRING ARRAY (Unique)

ALGOL HEX VALUE ARRAY Hex Array

ALGOL HEX PROCEDURE REFERENCE ARRAY (Unique)

ALGOL INTEGER Integer

ALGOL INTEGER ARRAY Integer Array

ALGOL INTEGER DIRECT ARRAY Integer Direct Array

ALGOL INTEGER PROCEDURE Integer Procedure

ALGOL INTEGER PROCEDURE REFERENCE (Unique)
ARRAY

ALGOL INTEGER VALUE ARRAY Integer Array

ALGOL LABEL (Unique)

ALGOL LIST (Unique)

ALGOL PICTURE (Unique)

continued

8600 0494-000 17-13

Using Parameters

Table 17-l. Programming Language Parameter Types (cont.)

Language Parameter Type General Type

ALGOL PICTURE ARRAY (Unique)

ALGOL POINTER Pointer

ALGOL PROCEDURE (SUBROUTINE) Procedure

ALGOL QUERY VARIABLE (Unique)

ALGOL QUEUE (Unique)

ALGOL QUEUE ARRAY (Unique)

ALGOL REAL Real

ALGOL REAL ARRAY Real Array

ALGOL REAL DIRECT ARRAY Rea I Di rect Array

ALGOL REAL PROCEDURE Real Procedure

ALGOL REAL PROCEDURE REFERENCE ARRAY (Unique)

ALGOL REAL VALUE ARRAY Real Array

ALGOL SWITCH (Unique)

ALGOL SWITCH FILE (Unique)

ALGOL SWITCH FORMAT (Unique)

ALGOL SWITCH LIST (Unique)

ALGOL TASK Task

ALGOL TASK ARRAY Task Array

ALGOL TRANSAQTION RECORD ALGOL Transaction Record

ALGOL TRANSACTION RECORD ARRAY ALGOL Transaction Record

ALGOL UNTYPED PROCEDURE REFERENCE (Unique)
ARRAY

C int argc, char* argv[] Real Array (unbounded)

COBOL(68) 01 ASCII Group Item EBCDIC Array

COBOL(68) 01 COMP Group Item Real Array

COBOL(68) 01 COMP-2 Group Item Hex Array

COB01(68) 01 CONTROL-POINT Elementary Item Task

COB01(68) 01 CONTROL-POINT Group Item Task Array

continued

17-14 8600 0494-000

Using Parameters

Table 17-l. Programming Language Parameter Types (cont.)

Language Parameter Type General Type

COBOL(68) 01 DISPLAY Group Item EBCDIC Array

COBOL(68) 01 EVENT Group Item Event Array

COBOL(68) 01 INDEX Group Item Hex Array

COBOL(68) 01 LOCK Group Item Event Group Item

COBOL(68) 77 COMP-l Elementary Item Integer

COBOL(68) 77 COMP-4 Elementary Item Real

COBOL(68) 77 COMP-5 Elementary Item Double

COBOL(68) 77 CONTROL-POINT Elementary Item Task

COBOL(68) 77 EVENT Elementary Item Event

COBOL(68) 77 LOCK Elementary Item Event

COBOL(68) File File

COBOL(68) Transaction Record Transaction Record

COBOL74 01 BINARY Group Item Real Array

COBOL74 01 COMP Group Item Hex Array

COBOL74 01 CONTROL-POINT Elementary Item Task

COBOL74 01 CONTROL-POINT Group Item Task Array

COBOL74 01 DISPLAY Group Item EBCDIC Array

COBOL74 01 EVENT Group Item Event Array

COBOL74 01 INDEX Group Item Hex Array

COBOL74 01 KANJI Group Item EBCDIC Array

COBOL74 01 LOCK Group Item Event Array

COBOL74 77 BINARY Elementary Item Integer

COBOL74 77 CONTROL-POINT Elementary Item Task

COBOL74 77 DOUBLE Elementary Item Double

COBOL74 77 EVENT Elementary Item Event

COBOL74 77 LOCK Elementary Item Event

COBOL74 77 REAL Elementary Item Real

COBOL74 File File

continued

8600 0494-000 17-15

Using Parameters

Table 17-l. Programming Language Parameter Types (cont.)

Language Parameter Type General Type

COBOl74 Transaction Record Transaction Record

COBOl85 01 BINARY Group Item Integer Array

COBOl85 01 COMP Group Item Hex Array

COBOl85 01 REAL Group Item Real Array

COBOl85 01 DOUBLE Group Item Double Array

COBOl85 01 DISPLAY Group Item EBCDIC Array

COBOl85 77 REAL Elementary Item Real

COBOl85 77 DOUBLE Elementary Item Double

COBOl85 77 BINARY PIC 9(1-11) Elementary Item Integer

COBOl85 77 BINARY PIC 9(11-23) Elementary Double
Item

COBOl85 77 File File

Pascal Array of Boolea n . Boolean Array

Pascal Array of Char Integer Array

Pascal Array of Char Subrange I nteger Array

Pascal Array of Enumeration Integer Array

Pascal Array of Enumeration Subrange Integer Array

Pascal Array of Explicit Data Type Real Array

Pascal Array of Fixed (n < 12) I nteger Array

Pascal Array of Fixed (n > 11) Double Array

Pascal Array of Integer Integer Array

Pascal Array of Integer Subrange Integer Array

Pascal Array of Packed Array Real Array

Pascal Array of Real Real Array

Pascal Array of Record Real Array

Pascal Array of Set Real Array

Pascal Array of Sfixed (n < 12) I nteger Array

Pascal Array of Sfixed (n > 11) Double Array

continued

17-16 8600 0494-000

Using Parameters

Table 17-l. Programming Language Parameter Types (cont.)

Language Parameter Type General Type

Pascal Array of Vlstri ng Real Array

Pascal Binary (n) EBCDIC Array

Pascal Bits (n) EBCDIC Array

Pascal Boolean Boolean

Pascal Boolean Subrange Boolean

Pascal Boolean 1 Hex Array

Pascal Boolean4 Hex Array

Pascal Char Integer

Pascal Char Subrange Integer

Pascal Digits (n) Hex Array

Pascal Digits_s (n) Hex Array

Pascal Display_s (n) EBCDIC Array

Pascal Display_z (n) EBCDIC Array

Pascal Enumeration Integer

Pascal Enumeration Subrange Integer

Pascal Explicit Record (call-by-value) Real Array

Pascal Explicit Record (var) EBCDIC Array

Pascal Fixed (n < 12) Integer

Pascal Fixed (n > 11) Double

Pascal Function: Boolean Boolean Procedure

Pascal Function: Boolean Subrange Boolean Procedure

Pascal Function: Char Integer Procedure

Pascal Function: Char Subrange Integer Procedure

Pascal Function: Enumeration Integer Procedure

Pascal Function: Enumeration Subrange Integer Procedure

Pascal Function: Fixed (n < 12) Integer Procedure

Pascal Function: Fixed (n > 11) Double Procedure

Pascal Function: Integer Integer Procedure

Pascal Function: Integer Subrange Integer Procedure

continued

8600 0494-000 17-17

Using Parameters

Table 17-l. Programming Language Parameter Types (cont.)

Language Parameter Type General Type

Pascal Function: Real Real Procedure

Pascal Function: Sfixed (n < 12) Integer Procedure

Pascal Function: Sfixed (n > 11) Double Procedure

Pascal Hex (n) Hex Array

Pascal Integer Integer

Pascal Integer Subrange Integer

Pascal Integer48 (n) EBCDIC Array

Pascal Integer96 (n) EBCDIC Array

Pascal Long Set (> 48 Elements in Set) Real Array

Pascal Packed Array of Boolean Hex Array

Pascal Packed Array of Char EBCDIC Array

Pascal Packed Array of Enumeration

(0-16 Elements) Hex Array

(17 -256 Elements) EBCDIC Array

(> 256 Elements) I nteger Array

Pascal Packed Array of Fixed (n < 12) I nteger Array

Pascal Packed Array of Fixed (n > 11) Double Array

Pascal Packed Array of Integer I nteger Array

Pascal Packed Array of Real Real Array

Pascal Packed Array of Record Real Array

Pascal Packed Array of Set Real Array

Pascal Packed Array of Sfixed (n < 12) Integer Array

Pascal Packed Array of Sfixed (n > 11) Double Array

Pascal Packed Array of Subrange

(0-16 Elements) Hex Array

(17-256 Elements) EBCDIC Array

(> 256 Elements) Integer Array

Pascal Packed Array Of Vlstring Real Array

Pascal Procedure Procedure

continued

17-18 8600 0494-000

Using Parameters

Table 17-l. Programming Language Parameter Types (cont.)

Language Parameter Type General Type

Pascal Real Real

Pascal Real48 (n) EBCDIC Array

Pascal Record Real Array

Pascal Schema Refer to "Passing
Parameters to Pascal
Schemata" later in this
section.

Pascal Sfixed (n < 12) Integer

Pascal Sfixed (n > 11) Double

Pascal Short Set (1-48 Elements In Set) Real

Pascal S_digits (n) Hex Array

Pascal S _display (n) EBCDIC Array

Pascal U_display (n) EBCDIC Array

Pascal Vlstring Real Array

Pascal Word48 (n) EBCDIC Array

Pascal Word96 (n) EBCDIC Array

Pascal Z_display (n) EBCDIC Array

PLJI Boolean (48-bit Op) Boolean

PLJI Character Array (B-bit) EBCDIC Array

PLJI DimensionS/Lower Bounds (Unique)

PLJI DimensionS/No Lower Bounds (Unique)

PLJI Double Array Double Array

PLJI Double (96-bit Op) Double

PLJI File File

PLJI Integer (4B-bit Op) Integer

PLJI Pointer Pointer

PLJI Real (4B-bit Op) Real

PLJI Single Array Boolean Boolean Array

PLJI Single Array Integer Integer Array

continued

8600 0494-000 17-19

Using Parameters

Table 17-1. Programming Language Parameter Types (cont.)

Language Parameter Type General TYpe

PLII Single Array Real Real Array

WFL BOOLEAN Boolean

WFL INTEGER Integer

WFL REAL Real

WFL STRING Real Array

17-20 8600 0494-000

.Using Parameters

Table 17-2. Matching Parameter Types

General Type language Parameter Type Special Matches

ASCII Array

ALGOL ASCII ARRAY

ALGOL ASCII VALUE ARRAY

Boolean

ALGOL BOOLEAN Matching Actuals:

Pascal Boolean Boolean Procedure
(with 'no parameters)

Pascal Boolean Subrange Integer

PLJI 48-bit Op Boolean Real

WFL BOOLEAN

Matching Formals:

Integer

Real

Boolean Array

ALGOL BOOLEAN ARRAY

ALGOL BOOLEAN VALUE ARRAY

Pascal Array of Boolean

PLJI Single Array Boolean

Boolean
Procedure

ALGOL BOOLEAN PROCEDURE

ALGOL BOOLEAN VALUE ARRAY

Pascal Array of Boolean

Pascal Function: Boolean

PLJI Single Array Boolean

Complex Array

ALGOL COMPLEX ARRAY

ALGOL COMPLEX VALUE ARRAY

Direct File

ALGOL DIRECT FILE

continued

8600 0494-000 17-21

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches

Double

ALGOL DOUBLE

COBOl(68) 77 COMP-5 Elementary Item

COBOl74 77 DOUBLE Elementary Item

COBOl85 77 BINARY PIC 9(11-23)
Elementary Item

COBOl85 77 DOUBLE Elementary Item

Pascal Fixed (n > 11)

Pascal Sfixed (n > 11)

PL/I 96-bit Op Double

Double Array

ALGOL DOUBLE ARRAY

ALGOL DOUBLE VALUE ARRAY

COBOl85 01 DOUBLE Group Item

Pascal Array of Fixed (n > 11)

Pascal Array of Sfixed (n > 11)

Pascal Packed Array of Fixed (n >
11)

Pascal Packed Array of Sfixed (n >
11)

PL/I Double Array

Double
Procedure

ALGOL DOUBLE PROCEDURE

Pascal Function: Fixed (n> 11)

Pascal Function: Sfixed (n> 11)

continued

17-22 8600 0494-000

General Type

EBCDIC Array

8600 0494-000

Using Parameters

Table 17-2. Matching Parameter Types (cant.)

Language

ALGOL

ALGOL

COBOl(68)

COBOL(68)

COBOl74

COBOl74

COBOl85

Pascal

Pascal

Pascal

Pascal

Pascal

Pascal

Pascal

Pascal

Pascal

Pascal

Pascal

Pascal

Pascal

Pascal

Pascal

Pascal

Pl./I

Parameter Type

EBCDIC ARRAY

EBCDIC VALUE ARRAY

01 ASCII Group Item

01 DISPLAY Group Item

01 DISPLAY Group Item

01 KANJI Group Item

01 DISPLAY Group Item

Binary (n)

Bits (n)

Display s (n)

Display z (n)

Explicit Record (var)

Integer48 (n)

Integer96 (n)

Packed Array of Enumeration
(17 -256 Elements in
Enumeration)

Packed Array of Subrange
(17 -256 Elements in
Subrange)

Packed Array of Char

Real48 (n)

S display (n)

U display (n)

Word96 (n)

Word48 (n)

Z display (n)

8-bit Character Array

Special Matches

Matching Actuals:

Integer Array

Matching Formals:

Integer Array

COBOl(68 & 74) Matches:

Hex Array

Integer Array

Real Array

continued

17-23

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches

Event

ALGOL EVENT

COBOL(68) 77 EVENT Elementary Item

COBOL(68) 77 LOCK Elementary Item

COBOL74 77 EVENT Elementary Item

COBOL74 77 LOCK Elementary Item

Event Array

ALGOL EVENT ARRAY

COBOL(68) 01 EVENT Group Item

COBOL(68) 01 LOCK Group Item

COBOL74 01 EVENT Group Item

COBOL74 01 LOCK Group Item

File

ALGOL FILE

COBOL(68) File

COBOL74 File

COBOL85 77 File

Pl/I File

Hex Array

ALGOL HEX ARRAY Matching Actuals:

ALGOL HEX VALUE ARRAY Integer Array

COB01(68) 01 COMP-2 Group Item

COB01(68) 01 INDEX Group Item Matching Formals:

COBOL74 01 COMP Group Item Integer Array

COBOL74 01 INDEX Group Item

COBOL85 01 COMP Group Item COB01(68 & 74) Matches:

Pascal Boolean 1 EBCDIC Array

Pascal Boolean4 Integer Array

Pascal Digits s (n) Real Array

continued

17-24 8600 0494-000

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches

Hex Array Pascal Digits (n)
(cont.)

Pascal Hex (n)

Pascal Packed Array of Enumeration
(0-16 Elements)

Pascal Packed Array of Subrange
(0-16 Elements)

Pascal Packed Array of Boolean

Pascal S digits (n)

Integer

ALGOL INTEGER Matching Actuals:

COBOL(68) 77 COMP-1 Elementary Item Boolean

COBOL74 77 BINARY Elementary Item Integer Procedure
(with no parameters)

COBOL85 77 BINARY PIC 9(1-11) Real
Elementary Item

Pascal Char Real Procedure
(with no parameters)

Pascal Char Subrange

Pascal Enumeration Matching Formals:

Pascal Enumeration Subrange Boolean

Pascal Fixed (n < 12) Real

Pascal Integer

Pascal Integer Subrange

Pascal Sfixed (n < 12)

PLJI 48-bit Op Integer

WFL INTEGER

continued

8600 0494-000 17-25

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches

I nteger Array

ALGOL INTEGER ARRAY Matching Actuals:

ALGOL INTEGER VALUE ARRAY EBCDIC Array

c COBOL85 01 BINARY Group Item Hex Array

Pascal Array of Char Real Array

Pascal Array of Char Subrange

Pascal Array of Enumeration Matching Formals:

Pascal Array of Enumeration EBCDIC Array
Subrange

Pascal Array of Fixed (n < 12) Hex Array

Pascal Array of Integer Real Array

Pascal Array of Integer Subrange

Pascal Array of Sfixed (n < 12)

Pascal Packed Array of Enumeration
(> 256 Elements)

Pascal Packed Array of Fixed
(n < 12)

Pascal Packed Array of Integer

Pascal Packed Array of Subrange
(> 256 Elements)

Pascal Packed Array of Sfixed
(n < 12)

PLJI Single Array Integer

Integer Direct
Array

ALGOL INTEGER DIRECT ARRAY Matching Actuals:

Real Direct Array

Matching Formals:

Real Direct Array

continued

17-26 8600 0494-000

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches

Integer
Procedure

ALGOL INTEGER PROCEDURE Matching Actuals:

Pascal Function: Char Real Procedure

Pascal Function: Char Subrange

Pascal Function: Enumeration Matching Formals:

Pascal Function: Enumeration Integer
Subrange

Pascal Function: Fixed (n < 12) Real

Pascal Function: Integer Real Procedure

Pascal Function: Integer Subrange

Pascal Function: Sfixed (n < 12)

Pointer

ALGOL POINTER

PL/I Pointer

Procedure

ALGOL PROCEDURE (SUBROUTINE)

Pascal Procedure

Real

ALGOL REAL Matching Actuals:

COBOl(68) 77 COMP-4 Elementary Item Boolean

COBOL74 77 REAL Elementary-Item Integer

COBOL85 77 REAL Elementary Item Integer Procedure

Pascal Real Real Procedure
(with no parameters)

Pascal Short Set (1-48 Elements in
Set)

PL/I 48-bit Op Real Matching Formals:

WFL REAL Boolean

Integer

continued

8600 0494-000 17-27

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches

Real Array

ALGOL REAL ARRAY Matching Actuals:

ALGOL REAL VALUE ARRAY Integer Array

C Int argc, Char *argv []

COBOl(68) 01 COMP Group Item Matching Formals:

COBOl74 01 BINARY Group Item Integer Array

COBOl85 01 REAL Group Item

Pascal Array of Explicit Data Type COBOL(68 & 74) Matches:

Pascal Array of Packed Array EBCDIC Array

Pascal Array of Rea I Hex Array

Pascal Array of Record

Pascal Array of Set

Pascal Array of Vlstring

Pascal Explicit Record (call-by-value)

Pascal Long Set (> 48 Elements in
Set)

Pascal Packed Array of Real

Pascal Packed Array of Record

Pascal Packed Array Of Set

Pascal Packed Array of Vistring

Pascal Record

Pascal Vlstring

Pl/I Single Array Real

WFL STRING

continued

17-28 8600 0494-000

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches

Real Direct
Array

ALGOL REAL DIRECT ARRAY Matching Actuals:

Integer Direct Array

Matching Formals:

Integer Direct Array

Real
Procedure

ALGOL REAL PROCEDURE Matching Actuals:

Pascal Function: Real Integer Proced u re

Matching Formals:

Integer

Integer Procedure

Real

Task

ALGOL TASK

COBOL(68) 01 CONTROL-POINT
Elementary Item

COBOL(68) 77 CONTROL-POINT
Elementary Item

COBOL74 01 CONTROL-POINT
Elementary Item

COBOL74 77 CONTROL-POINT
Elementary Item

Task Array

ALGOL TASK ARRAY

COBOL(68) 01 CONTROL-POINT Group
Item

COBOL74 01 CONTROL-POINT Group
Item

continued

8600 0494-000 17-29

Using Parameters

Table 17-2. Matching Parameter Types (cont.)

General Type Language Parameter Type Special Matches

Transaction
Record

ALGOL

ALGOL

COBOL(68)

COBOL74

TRANSACTION RECORD

TRANSACTION RECORD
ARRAY

Transaction Record

Transaction Record

Resolving Passing Mode Conflicts

17-30

Some programming languages, such as WFL and ALGOL, allow the initiating program to
specify the passing mode for a tasking parameter. In addition, programming languages
typically allow the receiving program to specify a passing mode for the formal parameter.
Thus, it is possible for the calling program and the receiving program to request different
passing modes for the same parameter.

The system is very forgiving of these types of mismatches and generally allows any
combination of actual and formal passing modes without issuing an error. However,
when the calling program and the receiving program request different passing modes,
the system uses the passing mode requested by the calling program. For example, if a
call-by-value actual parameter is passed to a call-by-reference formal parameter, the
system passes the parameter by value.

Note that the system is less forgiving of passing mode mismatches for parameters passed
to library procedures. For a discussion of the allowable passing mode combination for
library procedures, refer to Section 18, "Using Libraries."

Be very careful when writing a program that is intended to be initiated, and passed a
parameter, by calling programs written by other people. The calling program might use a
different passing mode for the parameter than you expected. For example, you might
design the receiving program to receive a parameter by value, and make assignments to
the parameter. However, if the calling program actually passes an expression by name,
then the receiving program terminates with an error when it attempts to assign a value
to the formal parameter. This is true because the calling program implicitly passed a
thunk, and it is not possible to store values into thunks. You can avoid these types of
problems by not making assignments to the formal parameter ..

There is one type of passing mode problem that can make it impossible even for the
receiving program to read the value of the formal parameter. If the calling program
specifies a constant or an expression as a call-by-name actual parameter, then the
compiler creates a thunk. If the receiving program specifies the formal parameter
as call-by-reference, then the formal parameter cannot receive a thunk. The calling

8600 0494-000

Using Parameters

program can initiate the receiving program successfully. However, when the receiving
program attempts to interrogate or modify the value of the formal parameter, the system
issues an "INVALID OPERATOR" error and discontinues the receiving program.

Note that this error does not occur if the call-by-name actual parameter is a variable,
rather than a constant or an expression. If a variable is used, then the compiler does
not create a thunk. The receiving program can use the formal parameter without any
problems.

Examples

Suppose that the following COBOL74 program is the receiving program. Note that the
formal parameter specification indicates the parameter REAL-P ARAM is to be received
by reference:

100 IDENTIFICATION DIVISION.
110 ENVIRONMENT DIVISION.
120 DATA DIVISION.
130 WORKING-STORAGE SECTION.
140 77 REAL-PARAM BINARY PIC 9 (11) RECEIVED BY REFERENCE.
150 PROCEDURE DIVISION USING REAL-PARAM.
160 START-HERE SECTION.
170 Pl.
180 MOVE 15 TO REAL-PARAM.
190 STOP RUN.

The following ALGOL program invokes the preceding program and passes the real
variable ACTUALREAL as the actual parameter. Note that the statement at line 150
in the following example specifies that the parameter is to be passed by value. This
statement overrides the RECEIVED BY REFERENCE clause and causes the parameter
to be passed by value. When the receiving program assigns a value of 15 to the formal
parameter, the value of the actual parameter is not affected. Thus, the statement at line
210 displays a value of 5; but if the statement at line 150 were deleted, the statement at
line 210 would display a value of 15.

100 BEGIN
110 FILE TERM (KIND=REMOTE);
120 TASK T;
130 REAL ACTUALREALi
140 PROCEDURE COBOLTASK (RVAL);
150 VALUE RVALi
160 REAL RVAL;
170 EXTERNALi
180 ACTUALREAL := 5;
190 REPLACE T.NAME BY IIOBJECT/COBOL/TASK. II ;
200 CALL COBOLTASK (ACTUALREAL) [T]i
210 WRITE (TERM,*//,ACTUALREAL)i
220 END.

8600 0494-000 17-31

Using Parameters

Now suppose that the COBOL74 program was invoked by a WFLjob instead. The
following WFL job invokes the COBOL74 program and passes a real parameter by value
(the default passing mode in WFL):

100 ?BEGIN JOB WFL/TEST;
110 CLASS = 2;
120 JOBSUMMARY = SUPPRESSED;
130 ELAPSEDLIMIT = 120;
140 REA L R : = 5;
150 RUN OBJECT/COBOL/TASK (R);
160 DISPLAY STRING(R,*);
170 ?END JOB

The statement at line 160 displays a value of 5. However, if you change the RUN
statement to read RUN OBJECT/COBOL/TASK (R REFERENCE); then the
parameter is passed by reference and the statement at line 160 displays a value of 15.

Passing Arrays

When an array is passed as a parameter, the actual and formal arrays must be of
compatible data types (such as integer, real, and so on). The actual and formal arrays
must also be compatible structurally. That is, the number of dimensions and the lower
bounds for each dimension must be compatible.

The following subsections discuss these types of compatibility issues for arrays that
are passed in process initiation statements. Note that this discussion centers on the
compatibility issues the system enforces at run time. If the parameter is passed between
procedures in a single program, the compiler can enforce additional restrictions at
compile time. For information about any such compile-time restrictions, refer to the
appropriate programming language manuals.

Matching Dimensions and Elements

17-32

When the calling program passes arrays, the actual array and the formal array must
have the same number of dimensions.

However, it is not necessary for the actual array and the formal array to have the same
number of elements in each dimension. Some 1an.guages allow formal array parameters
that do not specify the number of elements in each dimension. For example, ALGOL
does not allow upper bounds to be specified for the dimensions in a formal array
parameter specification; and Pascal allows formal array parameters, called schemata,
that are incompletely specified. (Schemata are discussed under "Passing Parameters to
Pascal Schemata" later in this section.) In these cases, the system assigns the formal
parameter the same number of elements as the actual parameter at run time.

Even if the formal parameter specifies the number of elements in each dimension of
an array, the actual parameter can have a different number of elements. The system
does not issue an error or warning in these cases. If the actual parameter passes more
elements than the formal parameter can receive, the system ignores the extra elements.

8600 0494-000

Using Parameters

Matching Unbounded Arrays

Some languages, such as ALGOL, allow formal array parameters that do not specify the
lower bounds for array dimensions. Such array parameters are referred to in this guide
as unbounded array parameters. Array parameters that explicitly specify the lower
bounds are referred to as simple array parameters ..

Be aware that parameter mismatch errors can result from passing an actual array with
an unspecified lower bound to a formal array with a specified lower bound, or vice versa.
For example, WFL STRING parameters are passed as unbounded real arrays. If a WFL
program passes a string parameter to an ALGOL program, the ALGOL program must
declare the formal parameter as unbounded; otherwise, a PARAMETER MISMATCH
error occurs at run time.

The following is an example of an ALGOL program that is passed a string parameter
from a WFL job.

100 PROCEDURE OUTER(ARR);
110 REAL ARRAY ARR[*];
120 BEGIN
130 FILE TERM(KIND=REMOTE);
140 INTEGER ARR_SIZE;
150 POINTER P;
160 P := ARR;
170 ARR_SIZE := SIZE(ARR) * 6;
180 WRITE(TERM,*//,P FOR ARR_SIZE);
190 END.

In the preceding pregram, the SIZE function at line 170 returns the size of the array
parameter in words. This value is multiplied by 6 to give the length of the array
parameter in characters.

COBOL 74 is somewhat more forgiving than ALGOL in that formal array parameters
in COBOL74 programs can receive either simple or unbounded actual parameters.
Consider the following COBOL 7 4 program:

100 IDENTIFICATION DIVISION.
110 ENVIRONMENT DIVISION.
120 DATA DIVISION.
130 WORKING-STORAGE SECTION.
140 01 PARAM PIC X(12) DISPLAY.
150·PROCEDURE DIVISION USING PARAM.
160 START-HERE SECTION.
170 Pl.
180 DISPLAY PARAM.
190
200 STOP RUN.

8600 0494-000 17-33

Using Parameters

The preceding COBOL74 program is initiated twice by the following ALGOL program.
The first time, the ALGOL program passes an unbounded array parameter. The second
time, the ALGOL program passes a simple array parameter. In each case, the actual
parameter is received by the formal parameter P ARAM in the COBOL74 program. The
COBOL74 program runs normally and displays the same output in each case.

100 BEGIN
110 REAL ARRAY ARRIN[0:12];
120 TASK T;
130 PROCEDURE EX1(ARRACT);
140 REAL ARRAY ARRACT[*];
150 EXTERNAL;
160 PROCEDURE EX2(ARRACT);
170 REAL ARRAY ARRACT[0];
180 EXTERNAL;
190 REPLACE ARRIN BY "HI THERE";
200 REPLACE T.NAME BY "(JASMITH)OBJECT/TEST/COBOL/TASK.";
210 CALL EX1 (ARRIN) [T];
220 CALL EX2 (ARRIN) [T];
230 END.

Note that the preceding comments about COBOL74 hold true only for tasking
parameters. COBOL74 programs display less flexible behavior when they are invoked
as libraries. In this case, the programmer must know in advance whether the actual
array parameter is simple or unbounded. If the actual parameter is unbounded, the
programmer must use a LOWER-BOUNDS clause in the formal array declaration, or
else declare an extra BINARY parameter to receive the lower bound. Of these two
techniques, the LOWER-BOUNDS clause is equally compatible with tasking or library
calls, whereas the extra BINARY parameter works only for library calls.

For further information about unbounded array parameters to library procedures, refer
to Section 18, "Using Libraries."

Matching Pascal Arrays

Some special rules apply' for passing parameters to a Pascal formal parameter that is
either a multidimensional array or an incompletely defined array.

Passing Multidimensional Arrays

17-34

Pascal arrays are all stored internally as one-dimensional arrays. Declaring a Pascal
array with multiple dimensions creates an indexing compiler scheme, which makes it
appear that the array has multiple dimensions. Within the Pascal program, the fact that
the array is really one dimensional is never visible. However, this fact is visible when
parameters are passed to a Pascal program from a program written in another language.

Because Pascal formal array parameters are implicitly one dimensional, actual array
parameters passed to Pascal programs must always be one dimensional. The elements
of the actual array are mapped into the formal array according to an algorithm that

8600 0494--000

Using Parameters

increments the indexes for the highest dimension, then the next highest dimension, and
soon.

For example, suppose the actual parameter is an ALGOL EBCDIC array of one
dimension, [1:27]. The initiating process could pass this parameter to a Pascal formal
parameter that is a three-dimensional packed array of char. Suppose each dimension is
declared with indexes [1 .. 3]. The following table illustrates the mapping of elements
from the ALGOL actual array into the Pascal formal array:

ALGOL Index Pascal Index

1 1,1,1

2 1,1,2

3 1,1,3

4 1,2,1

5 1,2,2

6 1,2,3

7 2,1,1

8 2,1,2

9 2,1,3

The initiating process maps the remaining elements in a similar way.

Passing Parameters to Pascal Schemata

Before reading the rules for passing parameters to Pascal schemata, you should
understand the following Pascal terms: .

• Index

An index specifies a location in a particular array dimension. If a dimension has
indexes running from 1 to 5, then there are five indexes in that dimension.

• Discriminant

A discriminant appears in an array declaration and specifies the highest-numbered or
lowest-numbered index for a particular dimension. If the discriminant is an integer,
it is called a constant discriminant. If the discriminant is a variable, it is called a
dynamic discriminant.

• Element

An element is a single location in an array. An element is identified by an index for
each dimension stating the element's location in that dimension.

• Schema

A schema is an array declaration that includes one or more dynamic discriminants.
In other words, a schema is a type of incomplete array declaration. Using a schema
as a formal parameter makes it possible to pass arrays with different bounds and
different numbers of elements to the same formal parameter. The plural of schema
is schemata.

8600 0494-000 17-35

Using Parameters

17-36

When passing an array to a formal parameter that is a Pascal schema, the initiating
process must pass one or more additional parameters. This is the only situation in which
the system requires that the number of actual parameters be different from the number
of formal parameters. The additional actual parameters provide information about the
size of the actual array. Each of these additional parameters is a call-by-value integer.

The following are Pascal schemata types and the rules for passing parameters to each of
these schemata types:

• A vIstring (variable-length string). This formal parameter receives two actual
parameters: a parameter that contains the string value, followed by a call-by-value
integer parameter that records the length of the string.

• A one-dimensional packed array of char whose upper discriminant is dynamic. This
formal parameter receives the following two actual parameters: a one-dimensional
array, followed by one caI1-by-value integer parameter that gives the value of the
dynamic discriminant.

• Any other type of array or packed array whose declaration includes at least one
dynamic discriminant. This type of formal parameter receives the following actual
parameters, in the order listed:

A one.:dimensional array of a compatible type.

For each dimension, a call-by-value integer parameter specifying the total
number of elements in that dimension and all higher dimensions. For example,
imagine an array with five indexes in the first dimension, three in the second
dimension, and two in the third dimension. The first integer parameter is 30,
which is the result of multiplying 5, 3, and 2 together. The second integer
parameter is 6, which is the result of multiplying 3 and 2 together. The third
integer parameter is 2.

For each dynamic discriminant, a call-by-value integer parameter giving the
value of the discriminant. The order of the integer parameters is as follows:
first-dimension lower discriminant, first-dimension upper discriminant,
second-dimension lower discriminant, second-dimension upper discriminant, and
so on. Any constant discriminants are omitted.

8600 0494-000

Using Parameters

Examples

The following programs illustrate how an ALGOL program can pass an array to a Pascal
two-dllnensional packed array of char. The ALGOL program passes a one-dimensional
EBCDIC array.

% ALGOL PROGRAM
BEGIN

EBCDIC ARRAY
ALGOLARRAY[0:24];

TASK T;

PROCEDURE OUTSIDE(ACTUALARRAY);
EBCDIC ARRAY ACTUALARRAY[*];

EXTERNAL;

REPLACE T.NAME BY "OBJECT/PASCAL/TWODIM/CHAR.";
REPLACE ALGOLARRAY[0] BY "ONETWOONETWOONETWOONETWO Jl

;

CALL OUTSIDE(ALGOLARRAY) [T];
END.

{ PASCAL PROGRAM }
program pascalarray((formalarray formalarraytype));

TYPE
indexrange = 1 •• 10;
formalarraytype = packed array [2 .• 5, 2 •• 7] of char;

VAR
arrayindex, arrayindex2 : indexrange;

BEGIN
for arrayindex:= 2 to 5 do

for arrayindex2 := 2 to 7 do
formalarray[arrayindex, arrayindex2] := la ' ;

END.

8600 0494-000 17-37

Using Parameters

The following example shows what would happen if the formal parameter formalarray
in the preceding example were changed from a fully-specified array to a schema.
Because of this change, the ALGOL program must pass additional call-by-value integer
parameters.

% ALGOL PROGRAM
BEGIN
EBCDIC ARRAY

ALGOLARRAY [0:24];
INTEGER

ONEDIM, TWODIM, DISCI, DISC2;
TASK T;
PROCEDURE OUTSIDE (ACTUALARRAY, ONEDIM, TWODIM, DISCI, DISC2);

VALUE ONEDIM, TWODIM, DISCI, DISC2;
EBCDIC ARRAY ACTUALARRAY [*];
INTEGER ONEDIM, TWODIM, DISCI, DISC2;

EXTERNAL;

REPLACE T.NAME BY "0BJECT/TASK/SCHEMA/PASCAL/TWODIM/CHAR. II
;

ONEDIM := 24;
TWODIM:= 6;
DISCI := 2;
DISC2 := 7;
REPLACE ALGOLARRAY [0] BY 1I0NETWOONETWOONETWOONETWO II

;

CALL OUTSIDE (ALGOLARRAY, ONEDIM, TWODIM, DISCI, DISC2) [T];
"END.

{ PASCAL PROGRAM }
program pascal_twodim_schema((formalschema formalschematype»;

TYPE
indexrange = 1 •• 10;
formalschematype(discI, disc2 :indexrange) =

packed array [discI •• 5, 2 •• disc2] of char;
VAR

indexschema, indexschema2 : indexrange;
BEGIN

for indexschema := formalschema.discl to 5 do

END.

for indexschema2 := 2 to fonmalschema.disc2 do
formalschema[indexschema", indexschema2] := la ' ;

Passing COBOL74 Arrays to Bound Procedures

17-38

A COBOL74 host program can initiate a bound subprogram as a task with a PROCESS
statement or with the CALL < task identifier> WITH < section name> form of the
CALL statement. If the host program passes an array parameter to the task, the .
subprogram can receive various run-time errors (such as INVALID OPERATOR or SEG

8600 0494-000

Using Parameters

ARRAY ERROR) when it attempts to use the array. These errors can occur even if the
arrays in the host and subprogram are the same type and length.

Specifically, arrays of usage BINARY, COMPUTATION, REAL, or DOUBLE always
receive run-time errors when passed as parameters to a bound subprogram called as a
tasK. EBCDIC arrays (OI-Ievel with usage DISPLAy) are the only type of array that can
be passed successfully to such a subprogram. Nonarray items (77-level) can be passed
without a problem.

If it is necessary for the bound subprogram to share a non-EBCDIC array with the host
program, you can declare the array in the subprogram as a global array rather than a
parameter. This method allows the same data to be shared between the subprogram and
host, and does not cause run-time errors.

86000494--000 17-39

17-40 8600 0494-000

S'ection 18
Using Libraries

A library is a type of process that provides a set of objects that can be used by other
processes, which are known as user processes. The objects provided by a library are
called library objects. These objects are said to be exported by the library, and imported
by the user process. Multiple user processes can import objects from the same library
process.

You can write library programs in ALGOL, C, COBOL(68), COBOL74, COBOL85,
FORTRAN, FORTRAN77, NEwp, Pascal, and PL/I. You can write user programs in all
of these languages, as well as in RPG. A library written in one language can be used by
programs written in other languages.

A procedure is the type of object most commonly exported by libraries. By consolidating
related procedures into a library, you can avoid duplicating the procedures in all the
programs that need to use them. Further, you can maintain and enhance the shared
procedures more easily when they reside in a library, because you don't have to repeat
your work in every program that uses the procedures. .

A Series systems provide several other methods by which programs can make use of
a shared procedure, including binding, installation intrinsics, and separate programs.
Compared to binding, libraries offer the following advantages:

• Libraries export objects at run time, whereas the Binder adds procedures from
one object code file to another for permanent storage. You have to run the Binder
separately for each object code file to which a procedure is to be added. You have to
run the Binder again for each of these object code files whenever you make changes
to the shared procedure.

• Libraries allow procedures to be shared between programs in a wider variety of
languages than the Binder permits.

Compared to installation intrinsics, libraries offer the following advantages:

• Libraries can include objects that are declared globally to the exported procedures.
These could include files, databases, and so on.

• Libraries can contain initialization and termination code.

• Libraries can themselves call other libraries.

• Individual users can create their own libraries without possessing special privileges.

• Libraries can be written in more languages than can installation intrinsics.

• More than one version of a library can be in use at a time.

8600 0494-000 18-1

Using Libraries

Another method for sharing procedures is to write each procedure as a separate
program. Any other program that needs to make use of one of these shared procedures
can initiate the appropriate program as a task. Compared to this method of sharing
procedures, libraries offer the following advantages:

• The shared procedures can either be entered or initiated by the user program,
whereas a separate program can only be initiated. Procedure entrance takes less
time and system resource than process initiation.

• There are more programming languages that provide the ability to use libraries than
there are programming languages that provide the ability to initiate programs.

In addition to their role in providing shared procedures, libraries can also provide data
structures to user processes. FORTRAN and FORTRAN77 libraries can export files and
arrays in much the same way as exported procedures. Additionally, libraries can provide
user processes with indirect access to data objects that are declared in a library but not
actually exported. The use of libraries to allow user processes to share data objects is
discussed in "Providing Global Objects" later in this section.

This section gives an overview of library concepts that are common to most A Series
programming languages. This section also gives examples of library programs and user
programs written in most of the A Series programming languages. However, for a
complete description of the syntax related to library implementation and usage in each
language, refer to the manual for the specific language.

This section notes various restrictions on COBOL(68) and COBOL74 libraries that arise
from the fact that these languages do not permit nested blocks. Note that COBOL85
does permit nested blocks, and consequently provides more complete access to A Series
library features than do COBOL(68) or COBOL74.

Creating Library Programs
In most programming languages, library programs can contain all the features of any
ordinary program. What distinguishes a library program is the inclusion of an export

. list and a FREEZE statement. A library program generally also includes features that
specify the sharing and duration properties of the library.

The following subsections outline the features required of library programs in
most languages, while also noting certain exceptions that apply to COBOL(68) and
COBOL74libraries. The features of COBOL (68) and COBOL74 libraries are most
easily understood as a subset of the general library features supported by the A Series
operating system.

Exporting Objects

18-2

A library can contain tnany declarations of objects, some of which are exported and some
of which are riot exported; There is nothing in the declaration of an exported object that
distinguishes it from a nonexported object. Instead, a separate construct called an export
list specifies all the objects in a given block that are to be exported. The export list is
used in addition to, rather than instead of, the declarations of the exported objects.

86000494-000

Using Libraries

Export lists are not used in COBOL(68) and COBOL74. Libraries in these languages
always export exactly one object, which corresponds to the PROCEDURE DIVISION of
the program.

Freezing the Library

When a library program is first initiated, it does not immediately become a library
process. In most languages, a library program is executed as an ordinary process until a
FREEZE statement in the program is encountered. The FREEZE statement changes an
ordinary process into a library process. While the process is frozen, it typically does little
or no work on its own; it simply remains present in memory so that user processes can
link. to it and use the exported procedures.

Eventually, a library process ceases to be a library and resumes execution as an ordinary
process. The duration of the library state is specified by one of three FREEZE options.
In most languages, you specify the FREEZE option in the FREEZE statement. The
following are all the options supported by A Series systems. Not all options are available
in all languages.

• TEMPORARY

The library program ceases execution and remains available as long as users of
the library remain. A temporary library that is no longer in use unfreezes and
resumes execution. The export objects declared in the library process do not become
available to user programs again. Using the TEMPORARY option prevents memory
space from being occupied by a library that is not in use.

• PERMANENT

The library program ceases execution and remains available unless interrupted
by an operator command or action by another program. (Means of resuming a
permanent library are discussed under "Thawing and Resuming Libraries" later in
this section.) It can be desirable to make a library permanent if it is frequently used;
the PERMANENT option prevents the system from having to re-create the library
many times during the day. Ii can also be desirable to make a library permanent if it
accesses a database or other files that need to be kept open.

• CONTROL

The program is made available as a library, and control passes to a local procedure
in the library called the control procedure, where execution continues. The control
library changes into a temporary library when the control procedure is exited.

The programmer typically includes statements in the control procedure to prevent
it from being exited until certain conditions are met. Thus, the CONTROL option
makes it possible for a library to decide when to resume itself. The CONTROL
option is available in ALGOL and, implicitly, in FORTRAN77.

After a library unfreezes, it cannot execute another FREEZE statement in order to
become a library again.

FREEZE statements are not used in COBOL(68) and COBOL74 libraries. Programs
written in these languages freeze automatically if they are initiated through the library
linkage mechanism. (This method of initiation is discussed under "Initiating Library

86000494-010 18-3

Using Libraries

Processes" later in this section.) You can use the TEMPORARY compile control
option to specify that the library freeze should. be temporary. If you do not use the
TEMPORARY option, the library sharing option determines the type of freeze. A
sharing value of SHAREDBYALL results in a permanent freeze, and sharing values
of PRIVATE or SHAREDBYRUNUNIT result in a temporary freeze. For further
information about the sharing option, refer to "Controlling Library Sharing" later in this
section.

The FREEZE statement is also not used in C libraries. A C library freezes automatically
if it is initiated by the library linkage mechanism. The freeze occurs immediately after
the function main executes. You can use the DURATION compiler option to specify
whether it should be a temporary or permanent freeze.

You can use the LIBS (Library Task Entries) system command to list the frozen library
processes on the system. The list includes permanent, temporary, and control libraries.

Controlling Library Sharing

18-4

Although multiple user programs can use the library at the same time, they are not
necessarily using the same instance of the library. You can use the compiler control
option SHARING to specify whether multiple user processes access the same instance of
the library. The following are the possible values of this option, and their meanings.

• PRIVATE

The operating system initiates a separate instance of the library program for each
user process that links to the library. Values assigned to global objects in the library
by a particular user process are visible only to that user process.

• SHAREDBYALL

All user processes share the same instance of the library. If one user process
changes the value of a global object in the libr8r$ the next user process that
interrogates the global object receives the changed value. The SHAREDBYALL
option can be useful if the service provided by the library involves combining
information from several users or sharing resources among several users.

• SHAREDBYRUNUNIT

The same instance of the library is shared by a user process and all frozen libraries
that the user process imports objects from, either directly or indirectly. Note that
this group of processes, known as a run unit, is not the same as a process family. For
example, tasks initiated by the user process are not part of the rim unit. Any other
user processes linked to the library are also considered to be separate run units and
receive their own instances of the library. Note that this definition of run unit should
not be confused with the ANSI COBOL74 and COBOL85 definitions of run unit.

Note that a library is its own run unit until it freezes. For example, suppose a user
process named UP links to a library named LIB!. Suppose also that, before LIBI
freezes, it links to a library called LIB2. In this case, library Lm2 is in the run unit
of library LIBI, but not the run unit of user process UP. If library LIBI had frozen
before linking to Lm2, then both Lmi and LIB2 would be in the run unit of user
process UP.

86000494-010

Using Libraries

• DONTCARE

In most programming languages, this option is a nonpreferred synonym for
SHAREDBYALL. However, in C and COBOL85, this option is anonpreferred
synonym for SHAREDBYRUNUNIT.

If a library program does not include the SHARING compiler control option, then
the compiler assigns a default SHARING option to the library. The default value of
the SHARING option is SHAREDBYALL in ALGOL, COBOL(68), FORTRAN, and
FORTRAN77; and SHAREPBYRUNUNIT in C, COBOL74, COBOL85, and Pascal.
PL/I libraries are always PRIVATE. The SHAREDBYALL value is not available in C or
COBOL85.

Sharing is handled in a special way for COBOL(68) and COBOL74 libraries. If
a library written in these languages has a sharing value of SHAREDBYALL or
SHAREDBYRUNUNIT, then multiple user processes can link to the same instance of
the library. However, the operating system ensures that only one user process can be
executing the procedure exported by this library at any given time. If another user
process invokes the procedure while it is in use, the operating system causes this user
process to wait until the procedure becomes available.

Note that the library sharing option affects only the relationship between library
declarations and library instances. The sharing option cannot prevent multiple user
processes from accessing the same library instance through a shared library declaration.
For example, the outer block of an ALGOL program might include a library declaration.
If this ALGOL program initiates two internal tasks, the library declaration is visible to
both tasks. The two tasks could use this library declaration to access the same . library
instance, even if the library sharing option is PRIVATE.

Initiating Internal Library Processes

In ALGOL programs, an internal procedure can be initiated as a task and can later
freeze as a library, provided that the procedure includes a FREEZE statement and an
export list. NEWP programs marked with UNSAFE(TASKING) status also have this
capability. However, to simplify this discussion, this section discusses library processes as
if they were always executions of an entire library program.

Reinitialization of Local Variables

In most languages, any local variables declared in an exported procedure are reinitialized
each time that procedure is invoked. COBOL85 is the exception to this rule. Variables
declared in COBOL85 nested programs retain their values from one invocation to
the next, unless the PROGRAM·ID paragraph of the nested program includes an
IS INITIAL clause.

A library program can use global objects to store information between procedure
invocations. Refer to "Providing Global Objects" later in this section.

86000494-010 18-5

Using Libraries

Restrictions on OWN Objects

18-6

Declarations of arrays in an exported library procedure cannot include any OWN clause.
The OWN clause, which is available only in ALGOL, causes the value of an object to
be saved between invocations of the procedure in which that object is declared. If an
exported procedure includes a array declaration with an OWN clause, then when a user
process invokes the procedure, the system discontinues the user process with the error
"ILLEGAL OWN ARRAY". The library process itself is not affected by this error.

Note that an exported procedure can declare simple variables or pointers with OWN
clauses. If the library is a shared library, the OWN clause allows multiple user processes
to access the same instance of the same object. For example, if two user processes are
concurrently executing tIle same library procedure, and the library procedure declares
an OWN object, then any changes made by one user process to the value of the object
are immediately visible to the other user process. To prevent timing ambiguities, you
can use techniques such as those discussed under "Providing Global Objects" later in
this section.

8600 0494-010

Using Libraries

Restrictions on- COBOL(68) and COBOL74 Libraries

COBOL(68) and COBOL74 object code files are structured in a special way that allows
them to be executed either as libraries or as ordinary processes. Every program written
in these languages is available for use as a library, except for programs that

•. Specify in the data division that a parameter is RECEIVED BY CONTENT (that is,
received as a call-by-value parameter).

• Specify an 01-level data item with an OCCURS clause. COBOL74 does not permit
01-level data items to be declared with an OCCURS clause. COBOL(68) allows such
declarations, but does not permit programs with such declarations to be executed as
libraries.

• Specify parameters in the USING clause of the PROCEDURE division that are
not allowed for libraries. Each of the data items in the USING phrase must be
defined as level 01 or level 77, and must not redefine another data item. Further, the
parameters must be of data types that are allowed for library parameters. For a list
of the allowed library parameter types for COBOL(68) and COBOL74, refer to Table
18-2, "COBOL(68) Parameters," and Table 18-3, "COBOL74 Parameters."

• Are compiled with a LEVEL compiler control option that specifies a lexical level
greater than 2.

A program that does not use any of these restricted features is said to be library-capable.
A library-capable COBOL(68) or COBOL74 program freezes if it is initiated through the
library linkage mechanism. If the program is initiated by a process-initiation statement,
then the program runs as an ordinary process and does not freeze. For a discussion
of the library Unkage mechanism, refer to "Initiating Library Processes" later in this
section.

Circular library linkages are not allowed for COBOL(68) or COBOL74 libraries. If
COBOL(68) or COBOL74 library invokes itself, the operating system discontinues
the library with a run-time error. If a COBOL(68) or COBOL74 library invokes a
procedure in another library that in turn invokes the original library, both libraries
freeze successfully but the user process hangs indefinitely in the state WAITING ON AN
EVENT.

An EXIT PROGRAM statement must be used to exit a COBOL(68) or COBOL74 library
and to return to the calling program. By contrast, a STOP RUN statement causes
the user process to terminate at the point of the statement that invoked the library
procedure.

Because only the PROCEDURE DMSION of a COBOL(68) or COBOL74 library is
exported, most objects declared in the DATA DIVISION or ENVIRONMENT DNISION
are considered to be global to the exported procedure. Within each library instance,
these objects retain their values from one procedure call to the next. In a Shared library,
any changes made to the values of these objects by a user process are visible to all other
user processes.

86000494-010 18--7

Using Libraries

One exception to this behavior occurs for objects that are referred to in the USING
clause of the PROCEDURE DIVISION. This clause causes the objects to be treated as
parameters to the PROCEDURE DIVISION. Each user process receives a separate
instance.ofthese objects, and the values of the objects are not retained from one
procedure call to the next.

Another limitation arises from the fact that the entire PROCEDURE DIVISION is
exited. There is no place in a COBOL(68) or COBOL74 library to specify initialization
or termination code. By contrast, the outer block of an ALGOL library can contain
statements that execute' before the FREEZE statement or after the library unfreezes.

Creating User Programs
In general,' user programs can include all of the features of an ordinary program.
Further, a user program can itself be a library that invokes procedures imported from
other libraries.

In most programming languages, user programs are distinguished by the inclusion of
import declarations and library declarations. These declarations, and their equivalents in
COBOL(68) and COBOL74, are described in the following subsections.

Importing Objects

18-8

Import declarations include information such as the name of the imported object, the
type of object, and the library it is imported from. Declarations of imported procedures
must also include parameter specifications for any parameters accepted by the
procedure. However, the main body of the procedure (including all local declarations and
statements) is omitted.

In languages that include library declarations and import declarations, the user program
can use imported objects just as if they were local objects of the user program.

In COBOL(68) and COBOL74, import objects are not explicitly declared. Instead, when
invoking an imported procedure, you can use a special form of the CALL statement that
specifies both the name of the procedure and that of the library. If the CALL statement
does not explicitly specify a procedure name, the procedure name is assumed to be
PROCEDUREDMSION.

In addition to import declarations, the user program can contain declarations of objects
that are not imported from libraries.

8600 0494-010

Using Libraries

Specifying libraries

In most languages, the user program must include explicit declarations of all libraries
used by the program. A library declaration specifies the identifier by which the library
is known throughout the user program. A library declaration can also include library
attribute assignments.

Library attributes should not be confused with task attributes or file attributes. The
library attributes provide information that helps the operating system to link the user
program to the correct library.

The user process can change the values of library attributes repeatedly, as long as the
user process is not currently linked to the library in question. The operating system
ignores any changes made to the attributes of a library while the user process is linked to
the library.

In COBOL(68) and COBOL74, user programs do not include library declarations.
However, these languages allow you to assign library attributes to a library.

The following subsections describe the library attributes. Each description begins by
stating whether the attribute can be read or written or both, and gives the attribute
type and the default value. Note that attribute types of EBCDIC string are pointer
expressions in NEwp, but as true EBCDIC strings in ALGOL.

FUNCTIONNAME
Property

Usage

Type

Default

Value

Read/Write

EBCDIC string

Value of INTNAME
library attribute

The FUNCTIONNAME library attribute identifies the function name of the library
that is to be linked to. FUNCTIONNAME has meaning only if the LIBACCESS library
attribute is set to BYFUNCTION.

The operating system stores the mappings between function names and library object
code files and links to the appropriate code file if a function name is used. The function
name makes it possible to change to a different library object code file without having to
recompile all the user programs that use the library.

Not all libraries have associated function names, although any library can be assigned
one or more function names by operator action. A library that has an associated function
name is called a support library.

86000494-010 18-9

Using Libraries

18-10

You can use the SL (Support Library) system command to display and control the
mappings between function names and libraries. You can also submit SL commands·
programmatically through the DCALGOL SETSTATUS function. An SL command can
do any of the following:

• Display the current function names and their associated object code files. '

• Assign a particular library object code file to a function name, without affecting any
programs that are currently using the library. In some cases, the change does not
take effect until the current invocation of the library thaws and resumes execution.
The associations between function names and library object code files survive a
halt/load or a CM (Change MCP) system command.

• Create a new function name and assign the object code file that is initially associated
with it. .

• Delete an existing function name, without affecting any programs that are currently
using the library. In some cases, the deletion is denied if a frozen invocation of the
library currently exists.

User programs can access a library directly by object code file title even ifa function
name has been defined for the library. However, undesirable side effects can result if
the first user program to access a library does so by object code file title instead of by
function name.

For example, if a library has a SHARING value of SHAREDBYALL and the first user
program accesses the library by object code file title, then the library process inherits
several task attributes of the user program, including USERCODE, FAMILY, and
SOURCESTATION. However, if the same library is first accessed by function name,
then these task attributes are not inherited.

Also, system libraries must first be accessed by function name, so they receive their
special privileges. For a discussion of this and other security issues related to the SL
command, refer to "Security Considerations" later in this section.

86000494-010

Using Libraries

INTNAME
Property

Usage

Type

Default

Value

Read/Write

EBCDIC string

Library identifier,
except in
COBOL(68) and
COBOL74; see
following
discussion

The INTNAME library attribute specifies the internal name for the library.

One use of the internal name is in assignments to the LIBRARY task attribute. You can
use the LIBRARY task attribute to alter the behavior of user programs. For example,
suppose a user program declares a library with an internal name of Lffil, a LIBACCESS
value of BYTITLE, and a TITLE value of OBJECT/Lffil. When you run the user
program, you can assign the LIBRARY task attribute a value of LIBRARY LIBI(TITLE
= OBJECT/OTHERLIB). This has the effect of causing the user program to link to a
different library than it otherwise would.

INTNAME also serves as the default value for the TITLE and FUNCTIONNAME
attributes.

Because libraries cannot be explicitly declared in COBOL(68) or COBOL74, the compiler
constructs the default INTNAME for a library from the first reference to that library
title in the user program. If the title includes multiple nodes separated by slashes (/), the
INTNAME is formed from the final node of the title.

The first reference to the library title might be in the CALL statement that invokes the
library, or in a CHANGE statement that assigns attribute~ to the library. If either of the
following. two statements is the first reference to a library in a COBOL 74 user program,
the library receives an INTNAME of LID I:

CHANGE ATTRIBUTE FUNCTIONNAME OF "OBJECT/LIBt" TO "TESTSUPPORT.".
CALL "FACT IN OBJECT/LIBt ll USING PARAM.

To prevent any two libraries in a COBOL(68) or COBOL74 program from receiving the
same INTNAME, you should assign each library a TITLE attribute value that has a
different value in the final node.

·86000494-010 IS-lOA

Using Libraries

LIBACCESS

18-10B

Property

Usage

Type

Default

Value

Read/Write

Mnemonic

BYTITLE

The LIBACCESS task attribute specifies the method the operating system should use
to identify the appropriate library to link the user program to. LIBACCESS has one of
the following mnemonic values: BYFUNCTION, BYINITIATOR, or BYTITLE. The
following are the effects of these values:

• BYFUNCTION

The operating system links the user program to the library with the function name
specified by the FUNCTIONNAME library attribute. The value of the TITLE
library attribute is ignored.

• BYINITIATOR

This value has meaning only if the user program was, itself, initiated by a library in
one of the following ways:

The user program was initiated as a dependent process by a library.

The user program is a library, and was initiated by the library linkage mechanism
after being invoked by a library.

In this case, a value ofBYINITIATOR causes the user program to link to the
initiating library process. When the BYINITIATOR value is used, the values of the
FUNCTIONNAME and TITLE library attributes are ignored.

Note: If the user program was initiated by a library as a dependent
process, and has since become a library itself with a freeze type of
CONTROL, then the system does not allow that user program to use
the BYINITIATOR value. If such a user program attempts to use
BYINITIATOR to link to a library, the system suspends the user
program. The operator can cause the user program to resume by
specifying a library code file title with the FA (File Attributes) system
command. Alternately, the operator can use the DB (Discontinue)
command to terminate the user program.

• BYTITLE

The operating system links the user program to the library whose object code
file title matches the value of the TITLE library attribute. The value of the
FUNCTIONNAME library attribute is ignored.

8600 0494-0 1 a

Using Libraries

LIBPARAMETER

TITLE

Property

Usage

Type

Default

Value

Read/Write

EBCDIC string

Null string

The LIBP ARAMETER library attribute is used to transmit information from the user
program to the selection procedures of libraries that provide dynamic linkage to export
objects. For further information, refer to "Dynamic Linkage" later in this section.

Property

Usage

Type

Default

Value

Read/Write

EBCDIC string

Value of INTNAME
library attribute,
except in
COBOl(68) or
COBOL74; see
following
discussion

The TITLE library attribute specifies the object code file title of the library. The TITLE
attribute has meaning only if the LmACCESS library attribute is set to BYTITLE.

Because libraries cannot be explicitly declared in COBOL(68) or COBOL74, the compiler
constructs the default title for a library from the first reference to that library in the
user program. The first reference to the library title might be in the CALL statement
that invokes the library, or in a CHANGE statement that assigns attributes to the
library. If either of the following two statements is the first reference to a library in a
COBOL74 user program, the library receives a title of OBJECT/Lml:

CHANGE ATTRIBUTE FUNCTIONNAME OF "OBJECT/LIBI" TO "TESTSUPPORT.".
CALL "FACT IN OBJECT/LIBI" USING PARAM.

To prevent any two libraries in a COBOL(68) or COBOL74 program from receiving the
same INTNAME, you should give each library a title that has a different value in the
final node of the title. Refer to "INTNAME" earlier in this section.

Controlling Library Linkage
The following subsections explain dynamic aspects of the relationship between a
user process and a library process, including the methods of initiating, linking to, and
delinking from libraries. These subsections also explain how linkages are established
between particular export objects and import objects.

86000494-010 18-11

Using Libraries

Linking to Libraries

18-12

Library linkage is established at run time by the operating system, based on the values of
the library attributes specified by the user process.

Library linkage typically occurs when the user process first invokes an object imported
from a particular library. For example, suppose a user process has import declarations
for three procedures, PROCl, PROC2, and PROC3, which all come from library LIBl.
Note that the order in which these imports are declared might not be the same as the
order in which they are invoked. Thus, PROCl might be declared first, but the user
process might invoke PROC3 first. In this case, the operating system establishes the
linkage to library LIBl when PROC3 is invoked.

If the requested library program cannot be found, the user process becomes suspended
at this point. If the LIBACCESS value is BYTITLE, then a "NO LIBRARY" message is
displayed as the RSVP message. If the LIBACCESS value is BYFUNCTION, and the
FUNCTIONNAME library attribute requests a function name that does not exist, the
RSVP message is "FUNCTION < function name> IS NOT DEFINED, SL, FA, OR DS".

If the requested library program is found, the system links the user program to an
existing instance of the library or initiates a new instance as discussed under "Implicitly
Initiating a Library" later in this section. The system then checks to see if the requested
obje~t is exported by the library, with one of the following results:

• If no object with the requested name is exported by the library, the system
discontinues the user process with the message "MISSING OBJECT <object
name> IN LmRARY < library name> ".

~ If there is an export object with the requested name, the system compares the type
and parameters of the import and export object. If the type and parameters match,
the user process continues executing normally. If they do not match, the system
discontinues the user process with the error message "OBJECT < object name>
TYPE OR PARAMETER :MISMATCH IN LIBRARY < library name> ".

During the linkage process, the system attempts to establish a link between user
program import objects and the corresponding library export objects. However, library
linkage can proceed successfully even if the system does not find matches for all the
import objects. A "MISSING OBJECT < object name> IN LmRARY < library
name> " or "OBJECT < object name> TYPE OR PARAMETER MISMATCH IN
LffiRARY < library name> " error occurs only later, when the user process attempts to
use the imported object.

Because of the possibilities for fatal errors in linking to libraries or using library objects,
you might want to consider using the LINKLmRARY function when linking to libraries.
This function, which is available only in ALGOL, NEwp, and Pascal, makes a conditional
attempt to establish linkage with the library. If the attempt fails, the function returns a
value indicating the reason for the failure, but no error messages are displayed. If the
attempt succeeds, the function returns a value indicating whether all the import objects
defined in the user program for that library were really present in the library.

86000494-010

Using Libraries

Initiating Library Processes

Library processes can be initiated in either of two ways: implicitly, through the library
linkage mechanism, or explicitly, by a process-initiation statement in another process.

Implicitly Initiating a Library

If a user process attempts to link to a library, and no instance of the library is currently
frozen, then the user process enters a waiting state. The STATUS task attribute is
still ACTIVE, but the stack state in the Y (Status Interrogate) system command is
WAITING ON AN EVENT. The library linkage mechanism of the operating system
automatically initiates the library program, which executes normally until it freezes and
becomes a library process. At this point, the system completes the linkage between the
user process and the library process, and the user process resumes execution.

Even if an instance of the library is already frozen, the system might initiate a new
instance of the library for the user process to link to. For example, if the sharing option
of the library is PRN ATE, then the system initiates a new instance of the library for
each user process. If the sharing option is SHAREDBYRUNUNIT, then the system
initiates a new instance of the library for each run unit that uses the library. (For details,
refer to the discussion of "Controlling Library Sharing" earlier in this section.)

If a PRIVATE or SHAREDBYRUNUNIT library is initiated through the library linkage
mechanism, and the library requests a permanent freeze, the system actually freezes
the library as a temporary library. The system does this because a PRN ATE or
SHAREDBYRUNUNIT library instance can only be linked to by a user process once.
Thus, no purpose would be served by allowing the library instance to linger after the
original user delinks.

If the user process attempts to link to a program that is not capable of becoming a
library, then the library linkage mechanism issues the error "LmRARY WAS NOT
INITIATED: < library name> " and discontinues the user process. This error can
happen, for example, if the user process attempts to link to an ALGOL program that
does not contain a FREEZE statement.

Because a library program initially runs as a regular program, the flow of execution
can be such that the execution of a FREEZE statement is conditional and can occur
anywhere in the program. If the library linkage mechanism initiates such a program, and
the resulting process terminates without ever having executed a FREEZE statement,
the system discontinues the user process with the error "LIBRARY DID NOT FREEZE:
< library name> ".

Explicitly Initiating a Library

A library process can be explicitly initiated by a process initiation statement in a
program. However, the resulting process can freeze only if it is an independent process
or an asynchronous dependent process. If the program is initiated as a synchronous
dependent process, by a WFL RUN statement, for example, then when the process
attempts to freeze, it is discontinued with the error "FREEZE FAILED, TASK TYPE
NOT PROCESS OR RUN".

8600 0494-000 18-13

Using Libraries

When a library process is intended to be explicitly initiated, the library should typically
specify a freeze duration of PERMANENT or CONTROL. If the freeze is TEMPORARY,
then the process can freeze successfully only if the process is an internal process initiated
by a PROCESS statement.

For libraries that are explicitly initiated, some special considerations apply to the sharing ~,
option. If the sharing option is PRIVATE or SHAREDBYRUNUNIT, then the library
instance is not directly available to user processes. However, such a library instance
can serve as a secondary library in a dynamic linkage mechanism. (This type of linkage
is discussed under "Dynamic Linkage" later in this section.) If the sharing option is
SHAREDBYALL or DONTCARE, then any user process can link to that library instance.

A library program can determine whether it was initiated explicitly or by the library
linkage mechanism by interrogating the LIBRARYSTATE task attribute. Bit [0: 1] of
the LIBRARYSTATE value stores a 1 if the process was initiated by the library linkage
mechanism.

Linking Export and Import Objects

Import objects are linked to corresponding export objects in one of three ways: directly,
indirectly, and dynamically. The declaration of each export object in the library program
specifies which of these linkage,methods is used. The method chosen depends on
whether the export object originates in the library program, or if the library itself
imports the object from another library.

Direct Linkage

Direct linkage occurs when the library program contains the complete declaration of
the object that is named in the export list of the library. For example, if a procedure is
exported, the library contains all the statements that make up the procedure.

Direct linkage is the only type of linkage that is provided by COBOL(68) and COBOL74
libraries.

Indirect Linkage

Indirect linkage occurs when the library program exports an object that is, in turn,
imported from another library. The system then attempts to link the user process to this
second library, which can provide the exported object directly, indirectly, or dynamically.
A chain of indirect or dynamic linkages must eventually end in a library that provides the
object directly.

Dynamic Linkage

18-14

Dynamic linkage is similar. to indirect linkage in that it allows a library to export an
object that was, in turn, imported from another library. However, dynamic linkage allows
the primary library to import objects with the same name from multiple secondary
libraries. Whenever a user process attempts to import an object with that name, the

8600 0494-000

Using Libraries

primary library can dynamically select the version of the procedure to provide to the user
process.

The dynamic linkage feature is available only in ALGOL libraries. Procedures that are
exported dynamically include a BY CALLING clause, as in the following example:

PROCEDURE READFILE;
BY CALLING SELECTION;

The BY CALLING clause specifies the name of a selection procedure, which you must
declare elsewhere in the library program. Whenever a user process first links to a
library, the system checks to see if any procedures imported by that user process are
declared in the library with a BY CALLING clause. If so, the system invokes the
selection procedure. The selection procedure must accept the following two parameters
from the system:

• A parameter of type EBCDIC string, which the system uses to pass in the value
of the LffiP ARAMETER library attribute as specified by the user process. This
parameter allows the user process to convey information to the library that might
help the library to decide which secondary library to import the procedure from.

• A parameter of type procedure, which the system uses to pass in an MCP procedure.
This procedure itself has a parameter, which is a task variable. The selection
procedure must invoke the MCP procedure before exiting, and must pass to it the
task variable of the secondary library that has been selected.

. The secondary library that is selected can provide the requested object through direct,
indirect, or dynamic linkage. A chain of indirect or dynamic linkages must eventually end
in a library that provides the object directly.

The selection procedure is invoked only once, at library linkage. All links to exported
procedures in the library are resolved during linkage. To cause the selection of a
different secondary library after linkage, the user process must first delink from the
dynamic library. The user process can then modify the LIBP ARAMETER library
attribute to request a different secondary library, and relink to the dynamic library.

For an example ofa library that provides dynamic linkage, refer to "ALGOL Library:
OBJECT/SAMPLE/DYNAMICLIB" later in this section.

Circular Linkage

It is possible for a chain of library linkages to be circular; thus, a library can reference
itself indirectly through a chain of library references. A circular linkage can only be
made if all the libraries involved are frozen and at least one of them was already frozen
at the time it linked to one of the other libraries in the circle.

8600 0494-000 18-15

Using Libraries

The system imposes the following restrictions on circular linkages:

• A given object exported by a library cannot be provided by direct or indirect linkage
to the same object in the same library. That is, if library L exports procedure X,
the chain of linkages that provide that procedure cannot lead back to procedure X
in library L. However, the linkages could lead back to some other procedure, for
example Y, in library L.

For an example of libraries that violate this restriction, refer to "Example 1: Indirect
Self Referencing," under "ALGOL Incorrect Circular Libraries" later in this section.

• No more than one of the libraries in a circular linkage can have a freeze type of
CONTROL.

If the user process makes a procedure call that results in a circular linkage of two
or more libraries that violates one of these restrictions, the system discontinues the
user process and displays the error message "CURRENT CIRCULAR LIBRARY
REFERENCE STRUCTURE IS NOT ALLOWED: < library name> ". The library name
identifies the library at the point in the chain where the linkage became circular. If the
user process initiated the chain of circular linkages with a LINKLffiRARY function, the
linkage fails and the function returns a value of -7.

Additionally, some incorrect types of circular linkage can result in the user process
hanging indefinitely. This situation occurs if

• A library provides an object by direct linkage to the same object in the same library.
Refer to "Example 2: Direct Self Referencing," under "ALGOL Incorrect Circular
Libraries" later in this section.

• Two libraries are waiting on each other to freeze. Refer to "Example 3: Libraries
that Wait on Each Other," under" ALGOL Incorrect Circular Libraries" later in this
section.

In either of these cases, the Y (Status Interrogate) system command shows the user
process to have a STACK STATE of WAITING ON AN EVENT. However, the STATUS
task attribute value remains ACTIVE, and the user process does not appear in the
W (Waiting Mix Entries) system command display. This situation continues until an
operator enters a DS (Discontinue) system command or \Ultil the system is halt/loaded.

For a correct example of circular library linkage, refer to "ALGOL Circular User
Programs" later in this section.

Matching the Object Name

18-16

Under "Linking to Libraries" earlier in this section, it was explained that the system
matches import objects. to export objects only if they have the same name. In general,
the name matching is based on ~he identifier specified in the import or export
declaration. However, there are a couple of exceptions to this rule.

86000494-000

Using Libraries

ALGOL user programs can declare import objects under one name, and cause them to
match export projects with a different name, by including an ACTUALNAME clause in
the import declaration. For example:

PROCEDURE READIT;
LIBRARY LIBI (ACTUALNAME = "READLINE");

Because of the ACTUALNAME assignment, the system looks for a matching export
object named READLINE instead of READIT. You can also change the actual name of
an import object outside the declaration, by using the SETACTUALNAME function.
The SETACTUALNAME function makes the requested change, if possible; otherwise,
SETACTUALNAME returns a value indicating why the actual name could not be
changed. One reason SETACTUALNAME can fail is that the actual name of an import
object cannot be changed while the user process is linked to the library the object is
imported from. '

Similarly, ALGOL library programs can declare export objects under one name, and
cause them to match import objects with a different name, by including an AS clause in
the export declaration. For example, the following export declaration causes an object
named PROC _ READ to be exported under the name READLlNE:

EXPORT PROC READ AS II READLINE" ;

One of the main uses of the ACTUALNAME clause, SETACTUALNAME function,
and AS clause is to facilitate interlanguage communication. For example, identifiers in
COBOL74 can include hyphens (-), whereas identifiers in ALGOL cannot. Ifa COBOL74
library exports an object with a name that includes a hyphen, an ALGOL user program
cannot declare an import object with exactly the same name. Instead, the ALGOL user
program can declare the import object with an identifier that is legal in ALGOL, and use
an ACTUALNAME clause to specify the name used in the COBOL74 library.

As discussed under "Creating. Library Programs" earlier in this section, most
COBOL(68) and COBOL74 programs can be called as libraries. However, these
programs do not include export lists or declarations of export objects. Instead, the
PROCEDURE DIVISION of the program is always the single export object. The name
of this export object is determined by the following rules:

• In COBOL(68), if the program contains a PROGRAM-ID comment, the first word of
the comment is used as the name of the library export object; if no PROGRAM-ID
comment appears, the name of the export object is PROCEDUREDMSION.

• In COBOL74, if the program contains a PROGRAM-ID comment and the CCI option
FEDLEVEL is equal to 5, the first word of this comment is used as the name of the
library export object; if no PROGRAM-ID comment appears, or if the FEDLEVEL is
not equal to 5, the name of the export object is PROCEDUREDIVISION.

In COBOL85 library programs, which export nested programs as library procedures, the
export name is specified by the PROGRAM-ID paragraph in the IDENTIFICATION
DIVISION of each nested program.

8600 0494-000 18-17

Using Libraries

Type Matching

Under "Linking to Libraries" in this section, it was pointed out that the system
compares import and export objects with matching names during library linkage. If
the objects are procedures, the system has to compare several aspects of the import
and export procedures to ensure that they match. The factors considered include the
procedure type, the number and type of parameters, and the passing mode used for each
parameter.

Matching Procedure Types

18-18

Procedures in ALGOL and some other languages can be invoked as functions that return
values. Such procedures are referred to as typed procedures. For example, an ALGOL
procedure can be of any of the following types:

• Untyped

• ASCII STRING

• BOOLEAN

• COMPLEX

• DOUBLE

• EBCDIC STRING

• HEX STRING

• INTEGER

• REAL

A user program written in COBOL(68), COBOL74, or COBOL85 can use the GMNG
clause of the CALL statement to receive the value returned by a typed library
procedure.

A FORTRAN or FORTRAN77 library procedure can be any of the following:

• SUBROUTINE

• REAL FUNCTION

• INTEGER FUNCTION

• DOUBLE PRECISION FUNCTION

• LOGICAL FUNCTION

• COMPLEX FUNCTION

• CHARACTER FUNCTION (FORTRAN77 only)

• COMMON

• FILE

8600 0494-000

Using Libraries

If an export procedure is typed, the matching import procedure must be of the same type
or a compatible type. For information about the compatibility of data types in different
languages, refer to "Matching Parameter Types" later in this section.

Matching Parameter Types

For an import procedure to match the corresponding export procedure successfully,
both procedures must specify the same number of parameters. The parameters must
be specified in the same order in both procedures. Further, each parameter specified by
the import procedure must be of a type compatible with the equivalent parameter to the
export procedure.

Because the system permits user programs to be written in different languages than
the libraries they use, there are times when the actual and formal parameters to a
library procedure are specified in different programming languages. Each programming
language provides different names for the same or similar types of data. The following
are the parameter types that can be specified in an ALGOL library procequre:

• BOOLEAN, BOOLEAN ARRAY, or DIRECT BOOLEAN ARRAY

• DOUBLE, DOUBLE ARRAY, or DIRECT DOUBLE ARRAY

• REAL, REAL ARRAY, or DIRECT REAL ARRAY

• INTEGER, INTEGER ARRAY, or DIRECT INTEGER ARRAY

• COMPLEX or COMPLEX ARRAY

• EBCDIC STRING or EBCDIC STRING ARRAY

• ASCII STRING or ASCII STRING ARRAY

• HEX STRING or HEX ARRAY

• EVENT or EVENT ARRAY

• TASKorTASKARRAY

• EBCDIC ARRAY or DIRECT EBCDIC ARRAY

• ASCII ARRAY or DIRECT ASCII ARRAY

• HEX ARRAY or DIRECT HEX ARRAY

• FILE or DIRECT FILE

• POINTER

• QUEUE

• TRANSACTION RECORD or TRANSACTION RECORD ARRAY

• PROCEDURE, declared using the FORMAL clause. If the procedure has
parameters, they must each be of one of the types listed previously. The procedure
itself must be untyped or else of one of the ALGOL procedure types listed under
"Matching Procedure Types" in this section.

The following subsections list the parameter types that are available for library
procedures in each of the various programming languages. For each parameter type, the

8600 0494-000 18-19

Using Libraries

18-20

equivalent ALGOL parameter type is listed. You can also use this information to deduce
which parameter types in two non-ALGOL languages are equivalent.

For example, you will find that a COMP, level 77 1-11 digits parameter in COBOL(68)
is equivalent to an ALGOL integer variable, and that a BINARY, level 77 1-11 digits
parameter in COBOL74 is also equivalent to an ALGOL integer variable. It follows that
the COBOL(68) parameter type can also match the COBOL74 parameter type. '

8600 0494-000

Using Libraries

C Parameter Types

All of the data types supported in C can be passed between a C user program and a C
library, with a few exceptions that are docwnented in the A Series C Programming
Reference Manual.

The data types that can be passed between C libraries and user programs in other
languages, or between C user programs and libraries in other languages, are much
more limited. Table 18-1, "C Parameters," lists the C parameter types available for
interlanguage library calls, and the ALGOL equivalents of these C parameter types.

Table 18-1. C Parameters

ALGOL Parameter Corresponding C Parameters

BOOLEAN intt

INTEGER char

intt

shortt

longt

pointers (all types)

REAL float

double

DOUBLE long double

INTEGER ARRAY int []

short []

long []

EBCDIC ARRAY char []

_heap_t

REAL ARRAY float []

double []

long double []

struct

union

Legend continued
t Both signed and unsigned types

8600 0494-010 18-21

Using Libraries

18-22

Table 18-1. C Parameters (cant.)

ALGOL Parameter Corresponding C Parameters

FILE file t

INTEGER PROCEDURE char 0

int 0

short 0

long 0

REAL PROCEDURE float 0

double 0

DOUBLE PROCEDURE long double 0

PROCEDURE void 0

Legend
t Both signed and unsigned types

The _heap _t parameter passes the value of the heap, which is a memory area where a C
program stores arrays, structures, addressed objects, and dynamically allocated objects.

Pointers in C are integer types that indicate the location of an item within the heap.
The exact meaning of C pointers varies according to the memory model used for
the C program; the programmer can request a particular memory model with the
MEMORY~ODEL compiler control option. If the heap is implemented with a
MEMORY_MODEL value of TINY or SMALL, then a nori-C program that calls a C
library can use the C pointer as an indicator of the offset of the item within a heap. If
the heap is implemented with a different MEMORY_MODEL value, then the non-C
program must use the _heap_to ytr _t procedure to convert the C pointer into a
conventional pointer.

The _heap_to ytr _t procedure is one of several export procedures that the C compiler
automatically creates in each C library. Other procedures that aid in array handling
include _copy_to ytr _t, _copy Jrom ytr _t, .-free _t, and _ malloc _to These procedures
can be accessed only by programs written in ALGOL (including any of the extended
forms of ALGOL), NEwp, or Pascal. For eXamples of the use of some of these
procedures, refer to "Library Examples" later in this section~

86000494-010

Using Libraries

COBOL74 Parameter Types

Table 18-3, "COBOL74 Parameters," lists the allowable parameters to a COBOL74
library and the corresponding ALGOL parameters. For further information about
COBOL74 parameters, refer to theA Series COBOLANSI-74 Programming Reference
Manual, Volume 1: Basic Implementation.

Table 18-3. COBOL74 Parameters

ALGOL Parameter Corresponding COBOL74 Parameters

DOUBLE BINARY, 77 12-23 digits

DOUBLE, 77

DOUBLE ARRAY [0] DOUBLE,OI

EBCDIC ARRAY [0] COM P, 01 group item

DISPLAY, 01

INDEX, 01 group item

EBCDIC STRING (non-resizable) DISPLAY item in STRING clause

EVENT EVENT, 77

EVENT ARRAY [0] EVENT, 01

FILE FILE

HEX ARRAY [0] COMp, elementary 01 and 77

INDEX, 01 elementary item

INTEGER BINARY, 77 1-11 digits

COMP item in INTEGER clause

INTEGER ARRAY [0] BINARY, 01 (If $INTEGERBNRY = TRUE,
the default)

PROCEDURE TRANSACTION PROCEDURE

REAL REAL, 77

REAL ARRAY [0] BINARY, 01 (If $INTEGERBNRY = FALSE)

continued

8600 0494-000 18-25

Using Libraries

18-26

Table 18-3. COBOL74 Parameters (cant.)

ALGOL Parameter Corresponding COBOL74 Parameters

REAL, 01

TRANSACTION RECORD TRANSACTION RECORD

TRANSACTION RECORD ARRAY [0] TRANSACTION RECORD ARRAY

In COBOL74 user programs, the GIVING clause of a CALL statement can specify a
variable to receive the value returned by a typed procedure. If the item in the GIVING
clause is a level 77 REAL, the procedure must be of type real. If the item in the GIVING
clause is a level 77 DOUBLE, the procedure must be of type double. If the item in the
GIVING clause is of any other type, the procedure must be of type integer, and the
system converts the integer value returned by the procedure to the data type specified in
the GIVING clause. If there is no GIVING clause, the p'rocedure must be untyped.

8600 0494-000

Using Libraries

COBOl8S Parameter Types

Table 18-4, "COBOL85 Parameters," lists the allowable parameters to a COBOL85
library and the corresponding ALGOL parameters. For further information about
COBOL85 parameters, refer to the A Series COBOL ANSI-85 Programming Reference
Manual, Volume 1: Basic Implementation.

Table 18-4. COBOl8S Parameters

ALGOL Parameter Corresponding COBOla5 Parameters

DOUBLE' DOUBLE level 77

DOU BlE ARRAY DOUBLE level 01

(Double Integer)t BINARY level 77, 12-23 digits

Integer (COMPUTATIONAL) 12-23 digits

(Double Integer Array)t BINARY level 01, 12-23 digits

EBCDIC ARRAY DISPLAY

EBCDIC STRING String (DISPLAY)

HEX ARRAY COMPUTATIONAL and INDEX

INTEGER BINARY level 77, 1-11 digits

Integer (COMPUTATIONAL) 1-11 digits

INTEGER ARRAY BINARY level 01, 1-11 digits

REAL REAL level 77

REAL ARRAY REAL level 01

Legend
t These data types are not implemented in ALGOL.

The BINARY and INTEGER items with 12-23 digits correspond to a data type that is
not implemented in ALGOL, but which would be a double-precision integer. These
parameter types can be passed only between a COBOL85 user program and a COBOL85
library.

In COBOL85 user programs, the GIVING clause of a CALL statement can specify a
variable to receive the value returned by a typed procedure. If the item in the GMNG
clause is a level 77 numeric, you can use Table 18-4 to determine the corresponding

86000494-000 18-27

Using Libraries

18-28

procedure type. If the item in the GIVING clause is a level 01 numeric item, the item
can match only a procedure of type Integer.

8600 0494-000

Using Libraries

FORTRAN and FORTRAN77 Parameter Types

Table 18-5, "FORTRAN77 Parameters," lists the allowable parameters to a FORTRAN
or FORTRAN77 library and their corresponding ALGOL equivalents. For further
information about FORTRAN and FORTRAN77, refer to the A Series FORTRAN
Programming Reference Manual and the A Series FORTRAN77 Programming
Reference Manual.

Table 18-5. FORTRAN/FORTRAN77 Parameters

Corresponding FORTRAN Corresponding
ALGOL Parameter Parameter FORTRAN77 Parameter

"
BOOLEAN LOGICAL LOGICAL

BOOLEAN ARRAY [*] LOGICAL array LOGICAL array

COMPLEX COMPLEX COMPLEX

COMPLEX ARRAY [*] COMPLEX array COMPLEX arrayt

DOUBLE DOUBLE PRECISION DOUBLE PRECISION

DOUBLE ARRAY [*] DOUBLE PRECISION array DOUBLE PRECISION arrayt

EBCDIC ARRAY [*]:1: None CHARACTER

None CHARACTER array

INTEGER INTEGER INTEGER

INTEGER ARRAY [*] INTEGER array INTEGER array

REAL REAL REAL

REAL ARRAY [*] REAL array REAL array

t The DOUBLEARRAYS option must be set in the FORTRAN77 source.

* The EBCDIC ARRAY [*] parameter must be followed by an INTEGER
parameter. The INTEGER parameter matches the hidden lower-bounds
parameter that FORTRAN77 generates for a CHARACTER or CHARACTER
ARRAY.

A FORTRAN or FORTRAN77 array with a lower bound of 1 is equivalent to an ALGOL
array with a lower bound of O.

8600 0494-000 18-29

Using Libraries

NEWP Parameter Types

18-30

Table 18-6, "NEWP Parameters," lists the allowable parameters to a NEWP library.
The corresponding ALGOL parameters are identical. For further information about
NEwp, refer to the A Series NEWP Programming Reference Manual.

Table 18-6. NEWP Parameters

ALGOL Parameter Corresponding NEWP Parameter

ASCII ARRAY [0] ASCII ARRAY [0]

BOOLEAN BOOLEAN

BOOLEAN PROCEDURE BOOLEAN PROCEDURE

DIRECT ARRAY [0] DIRECT ARRAY [0]

DIRECT EBCDIC ARRAY [0] DIRECT EBCDIC ARRAY [0]

DIRECT FILE DIRECT FILE

DIRECT HEX ARRAY [0] DIRECT HEX ARRAY [0]

DIRECT REAL ARRAY [0] DIRECT REAL ARRAY [0]

DOUBLE DOUBLE

DOUBLE ARRAY [0] DOUBLE ARRAY [0]

DOUBLE PROCEDURE DOUBLE PROCEDURE

EBCDIC ARRAY [0] EBCDIC ARRAY [0]

EVENT EVENT

EVENT ARRAY [0] EVENT ARRAY [0]

FILE FILE

HEX ARRAY [0] HEX ARRAY [0]

INTEGER INTEGER

INTEGER ARRAY [0] INTEGER ARRAY [0]

INTEGER PROCEDURE INTEGER PROCEDURE

POINTER POINTER

PROCEDURE (Untyped) PROCEDURE (Untyped)

REAL REAL

REAL SHORT SET (MAX VALUE < = 47)

REAL ARRAY LONG SET (MAX VALUE> 47)

REAL ARRAY [0] REAL ARRAY [0]

REAL PROCEDURE REAL PROCEDURE

TASK VARIABLE or ARRAY [0] TASK VARIABLE or ARRAY [0]

TRANSLATE TABLE TRANSLATE TABLE

continued

8600 0494-000

Using Libraries

Table 18-6. NEWP Parameters (cont.)

ALGOL Parameter Corresponding NEWP Parameter

TRUTHSET TRUTHSET

8600 0494-000 18-31

Using Libraries

Pascal Parameter Types

18-32

Table 18-7, "Pascal Parameters," lists the allowable parameters to a Pascal library and
their corresponding ALGOL equivalents. For further information about Pascal, refer to
the A Series Pascal Programming Reference Manual, Volume 1: Basic Implementation.

Table 18-7. Pascal Parameters

ALGOL Parameter Corresponding Pascal Parameters

BOOLEAN Boolean

Boolean subrange

BOOLEAN ARRAY [*] Array of Boolea n

BOOLEAN PROCEDURE Function: Boolean

Function: Boolean subrange

DOUBLE Fixed (n > 11)

Sfixed (n > 11)

DOUBLE ARRAY [*] Array of fixed (n > 11)

Array of sfixed (n > II)

Packed array of fixed (n > II)

Packed array of sfixed (n > 11)

DOUBLE PROCEDURE Function: fixed (n > II)

Function: sfixed (n > II)

EBCDIC ARRAY [*] Bits (n)

Binary (n)

U _display (n)

Z_ display (n)

Display _ z (n)

S_display (n)

Display _ s (n)

Word48 (n)

Word96 (n)

continued

8600 0494-000

Using Libraries

Table 18-7. Pascal Parameters (cant.)

ALGOL Parameter Corresponding Pascal Parameters

Integer48

Integer96

Real48

Explicit record (var)

Packed array of char

Packed array of subrange (17-256 elements
in subrange)

Packed array of enumeration (17-256
elements in enumeration)

FILE Systemfile

HEX ARRAY [*] Hex (n)

Digits (n)

S_digits (n)

Digits_s (n)

Boolean 1

Boolean4

Packed array of Boolean

Packed array of subrange (0-16 elements in
subrange)

Packed array of enumeration (O-16 elements
in enumeration)

INTEGER Integer

Char

Enumeration

Fixed (n < 12)

Sfixed (n < 12)

Integer subrange

Char subrange

Enumeration subrange

continued

8600 0494-000 18-33

Using Libraries

Table 18-7. Pascal Parameters (cont.)

ALGOL Parameter Corresponding Pascal Parameters

INTEGER ARRAY [*] Array of integer

Array of char

Array of enumeration

Array of fixed (n < 12)

Array of sfixed (n < 12)

Array of integer subrange

Array of char subrange

Array of enumeration subrange

Packed array of integer

Packed array of fixed (n < 12)

Packed array of sfixed (n < 12);

Packed array of subrange (> 256 elements
in subrange)

Packed array of enumeration (> 256
elements in enumeration)

INTEGER PROCEDURE Function: integer

Function! char

Function: enumeration

Function: fixed (n < 12)

Function: sfixed (n < 12)

Function : integer subrange

Function: char subrange

Function: enumeration subrange

PROCEDURE Procedure

REAL Real

Short set (max value < = 47)

REAL ARRAY [*] Array of real

continued

18-34 86000494-000

Using Libraries

Table 18-7. Pascal Parameters (cont.)

ALGOL Parameter Corresponding Pascal Parameters

Array of record

Array of set

Array of vlstri ng

Array of packed array

Array of explicit type

Long set (max value> 47)

Record

Vistring

Explicit record (by-value)

Packed array of real

Packed array of set

Packed array of record

Packed array of vlstring

REAL PROCEDURE Function: real

Some types of Pascal parameters can cause extra parameters to be passed ifa variable
of the parameter is declared as a parameter for a procedure or function. The Pascal
parameters affected by this are string schema, fixed length string schema, and any other
schema.

Refer to the A Series Pascal Programming Reference Manual, Volume 1: Basic
Implementation for detailed information about the Pascal parameters.

Subranges of types integer, Boolean, char, or enumeration are mapped as their host type,
except when the subranges or the types are components of packed arrays, which are

(described below.

Each user-defined type identifier is resolved to one of the Pascal parameter types shown
in Table 18-7 according to its general type characteristics. For example, type color, as it
is usually defined, would be considered an enumerated type and would be mapped to the
generic type integer. The following two array declarations are equivalent:

array [index-typel] of array [index-type2] of •••

array [index-typel, index-type2] of •••

8600 0494-000 18-35

Using Libraries

18-36

Packed arrays of integers, reals, sets, records, variable-length strings, or other arrays
are mapped as unpacked arrays of the same type. For packed arrays of Boolean, char,
subrange, or enumeration types, the mapping depends on the number of bits it takes to
represent t.he range of the type. If four bits or fewer are required, the mapping is to a
hexadecimal array with lower bound. If five to eight bits are required, the mapping is
to an EBCDIC arr~y with lower bound. If nine bits or more are required, the mapping
is to an integer array with lower bound. A more detailed description appears in the the
data representation discussion in' the A Series Pascal Programming Reference Manual,
Volume 1: Basic Implementation.

If a Pascal library program declares a parameter to be received as a read-only parameter,
the user program is allowed to pass the corresponding actual parameter either by
call-by-name, call-by-reference, call-by-value, or read-only. This is allowed because the
Pascal library program ensures that the parameter's value remains unchanged. A user
program can only pass a read-only parameter to a library program that receives the
parameter as a read-only parameter, to ensure that the value of the actual parameter is
not changed.

86000494--000

Using Libraries

PL/I Parameter Types

Table 18-8, "PL/I Parameters," lists the allowable parameters to a PL/I library and the
corresponding ALGOL parameters. For further information about PL/I, refer to the
A Series PL/I Reference Manual.

Table 18-8. PL/I Parameters

PLJI Parameter Corresponding ALGOL Parameter

Binary Fixed(p, q),

q = 0, P <= 39 INTEGER

q=0,39<p<=78 None

qneqO,p<=39 None

qneqO,39<p<=78 None

Binary Float(p),

p <= 39 REAL

39 < P <= 78 DOUBLE

Bit(n), n < = 48 BOOLEAN

Character(n) EBCDIC STRI NG

Character(*) EBCDIC STRING

Character(n) Varying EBCDIC STRING

Character(*) Varying EBCDIC STRING

Decimal Fixed(p, q),

q = 0, P <= 11 INTEGER

q = 0, 11 < P < = 23 None

q neq 0, p < = 11 None

qneqO,11 <p<=23 None

Decimal Float(p)

p <= 11 REAL

11 < P <= 23 DOUBLE

Transaction record TRANSACTION RECORD

Transaction record array TRANSACTION RECORD ARRAY [*]

8600 0494-000 18-37

Using Libraries

Matching Array Lower Bounds

18-38

Array parameters can be declared either with an undeclared lower-bound specification
or with a formal lower-bound specification. Arrays with undeclared lower bounds are
hereafter referred to as unbounded arrays. Arrays with formal lower bounds are
hereafter referred to as simple arrays.

In the case of unbounded arrays, the lower-bound value of the array is provided during
execution by the program that calls the procedure. In the case of simple arrays, the
lower-bound value of the array is fixed during compilation, typically to a value of 0 (zero).
The actual value of the lower-bound parameter for the simple array is ignored during
execution. .

If an unbounded array appears as a parameter to an imported or exported procedure,
the system generates one or more hidden parameters that pass the actual lower bound
for each dimension of the array. These hidden parameters are integer parameters that
are passed by value.

The syntax for array specifications in the various programming languages is described in
the following table.

Table 18-9. Unbounded and Simple Array Declarations

Language Unbounded Array Simple Array

ALGOL ARRAY A[*]; ARRAY A[O];

C float (*) [] None

COBOL(68) 01 A COMP WITH LOWER-BOUNDS. 01 A COMP.

COBOL74 01 A BINARY. 01 A BINARY.
77 B PIC S9(11) BI NARY.

COBOl85 01 A BINARY WITH LOWER-BOUNDS. 01 A BINARY.

FORTRAN REAL A(X). None

FORTRAN77 REAL A(*). None

NEWP ARRAY A[*]j ARRAY A[O]j

Pascal var a: ARRAYTYPEj None

Libraries and user programs written in COBOL(68) or COBOL85 can receive unbounded
array parameters by including a LOWER-BOUNDS clause in the formal array
declaration. A COBOL(68) or COBOL85 library always treats such an array parameter
as ifit had a lower bound of 0 (zero), regardless of the actual lower bound passed by the
user program.

COBOL74 libraries and user programs can specify unbounded array parameters
by adding a numeric parameter that receives the lower bound. In a COBOL74 user
program, this extra parameter must occur immediately after the unbounded array
in the CALL statement parameter list. In a COBOL74 library program, this extra

8600 0494-000

Using Libraries

parameter must occur immediately after the unbounded array in the USING clause of
the PROCEDURE DIVISION. COBOL74 libraries always treat array parameters as if
they had a 0 (zero) lower bound, regardless of the value passed in the extra parameter.

Pascal array parameters can reference space in a data pool or in the heap. As a result,
if a :F>ascal user program passes an array parameter to a library, some constructs in the
library might result in incorrect references or cause overwrite corruption of other arrays
stored in the same data pool or heap.

For example, suppose a Pascal user program passes an array A to an ALGOL library.
In the exported ALGOL procedure, the expression POINTER(A) references the first
element in the data pool or heap. By contrast, the expression POINTER(A[OJ) correctly
references the actual first element of the Pascal array A. Other constructs that can cause
similar problems, if not carefully used, include the SIZE and REMAINING CHARS
functions and the REPLACE, SCAN, and RESIZE statements. Note that there is no
system function that can return the size of a Pascal array.

Additional problems.can arise if a Pascal user program passes an array parameter to a
library written in a COBOL language. Like ALGOL libraries, COBOL libraries have no
way of determining the upper bound of an array in the heap. However, COBOL libraries
have the additional limitation that the lower bound of the array is always treated as 0,
regardless of where the array starts in the data pool.

Matching Parameter-Passing Mode

Library parameters can be passed by value, by reference, by name, or as read-only. The
read-only property causes the compiler to select the most efficient parameter-passing
mode, and prevents the receiving procedure from modifying the value of the parameter.
For an introduction to these parameter-passing modes and read-only parameters, refer
to "Parameter Passing Modes" in Section 17, "Using Parameters."

If the library program declares a parameter to be received as a read-only parameter, the
user program can pass the parameter as ca1l-by-name, call-by-reference, call-by-value,
or read-only. If a library program declares a parameter to be received by name or by
reference, the user program can pass the parameter by name, by reference or by value.
If the library program declares a parameter to be received by value, the user program
can only pass the parameter by value.

Table 18-10, "Parameter-Passing Modes," illustrates the parameter-passing rules. In
the table, the legal combinations of parameter-passing modes are marked with an X.

8600 0494-000 18-39

Using Libraries

18-40

Table 18-10. Parameter-Passing Modes

Library Program User Program

Read-Only Name Reference Value

Read-Only X X X X

Name X X X

Reference X X X

Value X

In ALGOL programs, parameters are declared with or without a VALUE clause. In
ALGOL library programs, parameters declared with a VALUE clause are received by
value. Parameters declared without the VALUE clause are received by reference, except
for formal procedures and integer, real, double, Boolean, and complex variables, which
are received by name. In ALGOL user programs, library procedure parameters declared
with a VALUE clause are passed by value. Parameters declared without a VALUE
clause are passed by reference, except for integer, real, double, Boolean, and complex
variables, which are passed by name.

In COBOL(68) and COBOL74, parameters are passed by reference; therefore, a
COBOL(68) or COBOL74 user program cannot call a library that has declared its
parameters by value. An ALGOL library must declare its parameters to be by name
or by reference if the ALGOL library is to be called by a COBOL(68) or COBOL74
program ..

A COBOL(68) library can declare its 77-level COMP or COMP-! parameters to be
received by content (value) or by reference (which is the default). A COBOL74 library
must declare its 77-level BINARY parameters to be received by refer~nce. If any
BINARY parameter is received by content, the program is not library-capable. Due to
the parameter-passing rules and the ALGOL, COBOL(68), and COBOL74 language
restrictions, an ALGOL program that calls a COBOL(68) or COBOL74 library must
declare its integer, real, or double parameters to be by value.

In COBOL85, parameters can be passed by reference or by value.

In FORTRAN and FORTRAN77, variable parameters are passed by name; array
parameters are passed by reference.

In NEwp, parameters are declared to be by value or by reference. Integers, real, double,
and Boolean variables that are not declared to be by value are passed by reference.

In Pascal, parameters are passed by reference, read-only, or value. Parameters that are
not declared to be passed by reference ("VAR" parameters) or by read-only ("CONST"
parameters) are passed by value.

8600 0494-000

Using Libraries

In PL/I, parameters are passed by reference or by name (not by value). A PL/I library
declares its parameters to be received by reference. A user program must pass
parameters by reference to a PL/I library.

Oelinking from Libraries

The system automatically delinks a user process from a library when the user process
exits the block in which the library is declared. However, at times it can be useful to
delink a user process from a library at an earlier point. For example, delinking a user
process from a library enables the user process to modify one or more of the library
attributes. The user process cannot modify these library attributes while it is linked to
the library.

There are two features that allow a user process to explicitly delink from a library: the
DELINKLIBRARY function and the CANCEL statement.

The DELINKLIBRARY function, which is available in ALGOL and Pascal, delinks the
user process from the library process without affecting any of the other processes using
the library. The library remains frozen, unless it is a temporary library and the delinked
process was the only process using the library.

The CANCEL statement, which is available in ALGOL, COBOL74, and COBOL85, also
delinks the user process from the library process, but has the additional effect of causing
the library process to unfreeze and resume execution as a regular process. This is true
whether or ~ot the library has a permanent or temporary freeze.

However, only libraries with a sharing option ofPRIV ATE or SHAREDBYRUNUNIT
can be canceled. An attempt to cancel a SHAREDBYALL library results in the warning
message "CANCEL WARNING, SHARED LmRARYWAS DELINKED". In this case,
the user process is delinked as if it had performed a DELINKLmRARY function, and the
library process remains frozen unless it is a temporary library with no other users.

If a user process cancels a SHAREDBYRUNUNIT library, then any other user processes
in the same run unit that are currently linked to the library process lose their linkage.
The next time one of these processes invokes an object in the canceled library, the
system initiates a new instance of the library and links the process to the new library
instance.

Note that internal tasks of a user process can link to a library by way of a single library
declaration in the user process. If such an internal task is executing a library procedure
when the parent user process executes a DELINKLmRARY function or a CANCEL
statement, the internal task is discontinued.

Thawing and Resuming Libraries

Thawing a library is the act of changing the frozen library process from a permanent
library into a temporary library. By contrast, the act of resuming a library causes the·
process to lose its library status and resume execution as an ordinary process. Execution
of the proc~ss resumes with the first statement after the FREEZE statement.

86000494-:-010 18-41

Using -Libraries

18-42

You can thaw a library process programmatically through assignments to the STATUS
task attribute of a process, or operationally through the THAW (Thaw Frozen Library)
system command. For details, refer to Section 6, "Monitoring and Controlling Process
Status."

Additionally, you can resume a library process programmatically with the CANCEL
statement in ALGOL, as discussed under "DeIinking from Libraries" earlier in this
section.

86000494-010

Using Libraries

Determining Which Users Are Linked to a Library

You can use the Y (Status Interrogate) system command to display the user processes
that are linked to a library. The following is an example of this display:

Status of Job 4840/4840 at 18:40:35
Program name: *SYSTEM/GENERALSUPPORT
Priority: 50
Origination: Unit 0
Stack State: Frozen

Thi s 1, i brary is bei ng used by 8 programs:
The MCP
9345: *SYSTEM/SDASUPPORT ON SYS38
4972: *SYSTEM/TCPHOSTSERVICES
4876: *SYSTEM/TCPIP/BNAV2/MANAGERS/12152
6551: *OBJECT/MAIL
2953: (SWDUNCAN)MCP/39/TRAP/MULTICOMP/AMLIP
2915: (JASMITH)MCP/MM17A ON MCPS
4983: *SYSTEM!PRINT/REMOTE/SERVER

A DCALGOL program can obtain the same information by using the GETSTATUS call
with type 0 (Mix Entries), subclass 1, and mask bits 18 and 34 set. Mask bit 18 returns
the nwnber of user processes linked to the library. Mask bit 34 returns a list of the user
processes.

86000494-010 18-42A

Using Libraries

Understanding-Library Process Structure
In most respects, an imported object can be used just as if it were declared by the user
process rather than the library. The following subsections explore the implications of
this structure for scope of declarations, taSk attribute usage, and error handling.

Process Stacks

A user process can either enter or initiate an imported procedure.

If the procedure is entered, it is executed as part of the user process stack. An imported
procedure is never executed in the library process stack.

If the procedure is initiated, it must be as a dependent process. The system creates
a new process stack to execute the procedure. The resulting process is considered to
be an external process. (For information about external processes, refer to Section 2,
"Understanding Interprocess Relationships.")

Library Task Attributes

18-428

If a user process enters an imported procedure, the task attributes of the user process
govern the execution of the procedure. If the MYSELF predeclared task variable is used
in the imported procedure, MYSELF refers to the user process. If the MYJOB task
variable is used in the imported procedure, MYJOB refers to the job of the user process
(that is, the eldest ancestor of the user process).

If a user process initiates an imported procedure, the resulting process receives its own
set of task attributes. In this case, the MYSELF task variable refers to the new process.
The MYJOB task variable refers to the job of the user process and the new process.
(Because the new process must be dependent, the user process and the new process
always have the same job.)

Thus, the MYSELF task variable, when referenced in an imported procedure, never
refers to the task attributes of the library process. There is no direct way for a user
process to access the task attributes of the library process it is linked to.

86000494-010

Using Libraries

Certain task attributes are particularly useful in the implementation of libraries and user
programs. These include the following:

• LIBRARY

This task attribute can be used to pass library equations to a user process at run
time. A library equation modifies the library attributes of libraries declared in the
user process. Each library equation is applied to the library declaration with the
corresponding internal name, as discussed under "INTNAME" earlier in this section.

• LIBRARYSTATE

A library process can use this task attribute to determine whether the library
process was initiated through the library linkage mechanism. .

• LIBRARYUSERS

This task attribute records the number of user processes that are currently linked to
a library. For example, a control library could interrogate its own LIBRARYUSERS
attribute before determining whether to thaw itself.

• STATUS

A frozen library process can be thawed by assigning this task attribute a value
of GOINGAWAY, as discussed in Section 6, "Monitoring and Controlling Process
Status." In addition to thawing the library, the GOINGAWAY assignment prevents
further user processes from linking to this library instance.

Error Handling

If a user process encounters a fault while executing an imported procedure, the system
treats this as a fault in the user process rather than in the library process. If neither the
imported procedure nor the user program incorporates fault handling code, the fault
causes the user process to be terminated. The fault has no effect on the status of the
library process.

A permanent or temporary library process cannot incur any faults while it is frozen,
because it is not executing any statements. However, an operator can terminate the
process with aDS (Discontinue) system command. Further, a control library process can
incur faults while executing the control procedure, even while the library is frozen. If a
library . process is terminated by a fault or operator action while user processes are linked
to it, the system also discontinues all the user processes.

For information about errors that can occur when a user process links to a library
process or invokes an imported procedure, refer to "Linking to Libraries" earlier in this
section.

Providing Global Objects
Shared libraries provide perhaps the most sophisticated means for communicating
information between processes. Any number of user processes can access the same
object by way of a shared library. The user processes can belong to different process
families and can be written in different languages.

86000494-000 18-43

Using Libraries

18-44

The main benefit of using a library for IPC is the flexible control it provides over the
interactions between user processes and shared objects. For example, if a data item is
being made available to many different user processes, the library can act to protect the
data from being corrupted by a wrongly designed user process. The library can also filter
information, so that a particular piece of data in an object can be made visible to one user
and not to others. Also, a library can provide a simple interface to information that has a
complex structure.

The key to using libraries for IPC lies in the addressing environment of an exported
library procedure. Such a procedure can access any objects declared globally to it in the
library. The rules for determining if a declaration is global to a given ALGOL procedure
are discussed in Section 15, "Using Global Objects." Objects declared in COBOL(68) or
COBOL74 libraries are global to the exported PROCEDURE DIVISION unless they are
specified as parameters to the PROCEDURE DMSION. For information about the
scope of declarations in other languages, refer to the appropriate programming language
manuals.

A library procedure can also access objects that are passed to it as parameters by a user
process. These parameters can be used to inform the library procedure of changes that
need to be made to a global object.

If the library procedure is a typed procedure, then you can use the return value to
transfer information about the global object back to the user process. You can also use
parameters that are passed to the procedure, by name or by reference, to transfer
information back to the user process.

For user processes to communicate through a library, they must access the same instance
of the library. You can ensure this by following these steps:

1. Set the SHARING option to SHAREDBYALL. This prevents a separate instance of
the library from being initiated each time a new user process links to the library.

2. Use a permanent freeze in some cases. A library with a temporary freeze suffices
for most cases, because it does not resume until all user processes have terminated.
However, if there will be periods of time when no user processes are linked to
the library, and the communication information needs to be preserved, then a
permanent freeze must be used. This preserves the library instance until it is
thawed by an operator command or a programmatic change to the STATUS task
attribute.

Note that objects declared within a library procedure cannot.be used for lPC. Even if
user processes access the same instance of a library, they receive different instances
of each exported library procedure. Changes made to these local objects by one user
process are not visible to other user processes.

A library can be written to ensure that only one user process can access a particular
global object at a time. For example, the library procedure that accesses a particular
global object could be written to first procure a globally declared event, then access the
global object, and then liberate the event. If all the library procedures that access the
global object are written this way, then the global object is protected from simultaneous
access by different user processes.

8600 0494-000

Using" Libraries

Events can also be used to ensure that user processes access a global object in a certain
order. For example, assume that user process A is supposed to access a particular global
object before user process B does. User process B could invoke a library procedure that
waits on a certain global event. This event might be one that is caused only at the end of
the library procedure called by user process A.

A library procedure can use the MYSELF task variable to access the task attributes of
the user process. (In a library procedure, MYSELF always refers to the user process,
not the library.) For example, the library procedure could interrogate the USERCODE
task attribute of the user process. The library procedure could be defined to provide
different actions for different user processes.

When designing a library, you must be aware of the fact that any of the user processes
might be discontinued while executing a procedure from the library. If the library
procedure being executed has procured an event, but has not yet liberated the event,
then the event remains procured. Other user processes waiting to procure the event
wait indefinitely. For further information, refer to the discussion of discontinued
processes and events in Section 16, "Using Events."

Another point to be aware of is that the information stored in a permanent library can be
lost if a system halt/load terminates the library process. The library can protect against
this possibility by writing data out to disk files.

For an simple example of a library that provides user processes with shared access to a
disk file, refer to "File Sharing Examples" in Section 19, "Using Shared Files".

Security Considerations
Users of a library can be restricted through the use of the SECURITYTYPE file
attribute of the library's object code file. If the SECURITYTYPE value is PRIVATE,
then any nonprivileged process that uses the library must have the same usercode as the
library. If the SECURITYTYPE value is GUARDED or CONTROLLED, then a guard
file is used to restrict the nonprivileged library users.

When a user process enters an imported procedure, the procedure is executed under the
usercode of the user process, with whatever privileges are defined for the usercode.

A process can also temporarily assume additional privileges while executing an imported
procedure. This is the case because the MP (Mark Program) system command can be
used to assign options to a library object code file. These options can confer compiler
status, control program status, privileged status, security administrator status, or
tasking status. A user process benefits from these added privileges only while executing
procedures imported from that library; it is not enough simply to be linked to the library.

Alternatively, the MP command can assign privileged transparent status, security
administrator transparent status, or tasking transparent status to the library object code
file. In this case, library procedures inherit privileges from the object code file of the
user process that invokes the procedures.

For more information about privileges inherited from usercodes and from object code
files, refer to Section 5, "Establishing Process Identity and Privileges."

86000494-010 18-45

Using Libraries

18-46

The operating system recognizes a special class of libraries called system libraries.
System libraries receive a special security status that allows them to access protected
objects in the operating system. Much of the system software is provided in the form of
system libraries. Examples of system libraries are GENERALSUPPORT, which provides
intrinsic functions; MARCSUPPORT, which provides Menu-Assisted Resource Control
(MARC); and DSSSUPPORT, which supports distributed system services (DSSs).

System libraries are always support libraries; that is, function names must be specified
for these libraries through the SL (Support Libraries) system command. However, not
all support libraries are system libraries. System libraries receive their special privileges
only if they are initiated through the library linkage mechanism on behalf of a user
process that links to the library by function. (For an introduction to support libraries,
refer to "FUNCTIONNAME" earlier in this section.)

You can also use the SL command to assign any or all of the following security-related
attributes to a library: LINKCLASS, MCPINIT, ONEONL Y, SYSTEMFILE, and
TRUSTED.

Of these attributes, TRUSTED andLINKCLASS are both related to the concept of
linkage classes. These are classes that provide an additional level of library access
control, beyond that provided by the security-related file attributes. Even if the library
program is a public file, a user program must have an appropriate linkag~ class in order
to use that library.

If the TRUSTED attribute of a library is set, then the system evaluates the linkage class
for each library procedure separately. In ALGOL and NEWP libraries, you can use the
export list to specify the linkage class for each library procedure.

If the TRUSTED attribute of a library is reset, then the system treats all the library
procedures as having the same linkage class. You can assign the linkage class for a
support library with the LINKCLASS option of the SL system command.

The following are the linkage classes that can be assigned to a library or a library
procedure:

Library
Linkage Class

o

1

2 to 7

8 to 15

Meaning

Unprotected. Programs of any linkage class can link to the library. This is
the default value.

Only programs of linkage class 1 can link to the library.

Reserved for use by system software.

Free for site-dependent definition and use.

86000494-010

Using Libraries

The linkage class of a user process is assigned by the system at the time the process is
initiated. The following are the predefined linkage classes that the system can assign to
a user process:

User Process
linkage Class

o
1

2

3

4

5

Type of Process

Default.

Master control program (MCP) and some system
libraries such as COMSSUPPORT,
DATACOMSUPPORT, and PRINTSUPPORT

Message control systems (MCSs) and tasking
programs

Environment libraries

Programs marked as privileged by the PU option of
the MP (Mark Program) system command or by
the PP (Privileged Program) system command

Programs marked as compilers by the COMPILER
option of the MP (Mark Program) system
command or by the MC (Make Compiler) system
command

Compatible
Library Linkage
Classes

° Any

0,2,3,4

0,3,4

0,4

0,5

.A library can itself become a user process if it calls another library. If the library process
was initiated BYFUNCTION, then the LINKCLASS value assigned by the SL command
determines the rights of that library as a user process.

The following are the remaining library attributes assignable by the SL command, and
their meanings:

Attribute
Name

MCPINIT

ONEONLY

SYSTEM FILE

Meaning

If set, the library object code file can be initiated only by the operating
system.

If set, only one version of the library code file is permitted to be in use on
the system at anyone time.

If set, the library code file is to be made a nonremovable system file when
initiated or marked as a support library by an SL command.

Note that some system libraries have selected library attributes assigned to them
automatically by the operating system. You can use the SL command to set any Boolean
attribute of a system library. However, if the operating system has already set a
Boolean attribute, you cannot use the SL command to reset that attribute. The Boolean
attributes are MCPINIT, ONEONLY, SYSTEMFILE, and TRUSTED.

If the LINKCLASS value of a system library is set by the operating system, then you can
use an SL command to change the LINKCLASS only to values that are able to link to
the system-defined LINKCLASS. For example, you can use an SL command to change
the LINKCLASS from 2 to 1, but not from 2 to 3.

86000494-010 18-47

I
I

Using Libraries

If an SL command assigns attributes to a system library that violate the preceding
rules, the system displays the error message "LIBRARY ATTRIBUTES NOT
CHANGEABLE".

Library Debugging
If you are debugging a user program, and you are not sure whether an observed bug
originates in the user program or in one of the libraries it uses, then it can be helpful to
set the LIBRARIES option of the OPTION task attribute. The LIBRARIES option
causes information related to libraries to be included in any program dumps generated
by the user process. This information includes

• The contents of all library process stacks to which the user process is linked.

• The contents of the library directory in each library process stack. There is one
library directory for each export list in a library. However, only one library directory
is in effect at the time a library freezes. For each export object, the library directory
stores the name, the type of object, and the type of linkage used (direct, indirect, or
dynamic). For exported procedures, the library directory also stores a description of
the parameters of the procedure.

• The contents of all library templates in the user process stack. One library template
exists for each library declaration executed by the user process. A library template
stores information about the library attributes. A library template also stores
descriptions of all the objects imported from a particular library, including the name,
type of object, and parameters.

Library Examples
The following subsections give examples of libraries and user programs that import
procedures from these libraries.

ALGOL Library: OBJECT/FILEMANAGER/LIB

18-48

The following library, called OBJECT/FILEMANAGER/Lm, provides a set of file
management routines through dynamic linkage. This library represents features of
dynamic linkage but does not necessarily represent efficient programming.

$SHARING = PRIVATE
BEGIN
TASK ARRAY LIBTASKS [0: 10] ;

STRING ARRAY FILETITLES [0:10J;

PROCEDURE FILEMANAGER (TASKINDEX);
VALUE TASKINDEX;
INTEGER TASKINDEX;

BEGIN
PROCEDURE READFILE;

%"FILEMANAGER/LIB.
% PROVIDE UP TO 11 DIFFERENT LIBRARY
% PROCESSES.
% LIBPARAMETER FOR EACH LIB PROCESS

86000494-010

Using Libraries

BEGIN

END READFILE;

PROCEDURE WRITEFILE;
BEGIN

END WRITEFILE;

EXPORT READFILE, WRITEFILE;

FREEZE (TEMPORARY);
FI LETITLES "[TASKINDEX] : = II. ";

END FI LEMANAGER;

PROCEDURE SELECTION (USERSFILE, MCPCHECK);
VALUE USERSFILE;
EBCDIC STRING USERSFILE;
PROCEDURE MCPCHECK (T); TASK T; FORMAL;

BEGIN
INTEGER TASKINDEX;
BOOLEAN FOUND;

% LOOK AT ALL THE FILETITLES CHECKING TO SEE IF A LIBRARY PROCESS
% HAS ALREADY BEEN INITIATED FOR FILE TITLE USERSFILE.
WHILE NOT FOUND AND (TASKINDEX LEQ 10) DO
BEGIN

IF FILETITLES [TASKINDEX] = USERSFILE THEN
FOUND := TRUE

ELSE
TASKINDEX := * + 1;

END;

% IF NO LIBRARY PROCESS EXISTS FOR THIS FILE TITLE, THEN CREATE ONE
IF NOT FOUND THEN
BEGIN

86000494-010

WHILE NOT FOUND DO % FIND AN UNUSED TASK VARIABLE
BEGIN

TASKINDEX := 0;
WHILE NOT FOUND AND (TASKINDEX LEQ 10) DO

IF LIBTASKS [TASKINDEX].STATUS LEQ 0 THEN
FOUND := TRUE

ELSE
TASKINDEX := * + 1;

IF NOT FOUND THEN
% WAIT A SECOND AND MAYBE
% A LIBRARY PROCESS WILL GO TO EOT.
WAIT «1»;

18-49

Using Libraries

18-50

END;
PROCESS-FILEMANAGER (TASKINDEX) [LIBTASKS [TASKINDEX]];
WHILE LIBTASKS [TASKINDEX].STATUS NEQ VALUE (FROZEN) DO

WAIT ((1»;
FILETITLES [TASKINDEX] := USERSFILE;

END;

MCPCHECK (LIBTASKS [TASKINDEX]);
END SELECTION;

PROCEDURE READFILE;
BY CALLING SELECTION;

PROCEDURE WRITEFILE;
BY CALLING SELECTION;

EXPORT READFILE, WRITEFILE;
FREEZE (TEMPORARY);
END LIBRARY.

Before attempting to understand this example, you should be familiar with the concepts
discussed under "Dynamic Linkage" in this section.

OBJECT/FILEMANAGER/LIB exports two procedures: READFILE and WRITEFILE.
OBJECT/FILEMANAGER/LIB provides these procedures dynamically. The
procedures are ultimately provided by various library processes that are initiated by
O:BJ:ECT/FILEMANAGER/LIB. Each of these offspring library processes is an instance
of the procedure FILEMANAGER. Each library process is intended to provide read
and write access to a different data file. Each user process is expected to use the
LIEP ARAMETER library attribute to indicate the name of the file to be read or written.

The system automatically invokes the SELECTION procedure whenever a user process
first links to OBJECT/FILEMANAGER/LIB. The system passes an MCP procedure to
the MCPCHECK parameter of the SELECTION procedure. The system also passes the
LIEP ARAMETER attribute specified by the user process to the USERSFILE parameter
of the SELECTION procedure.

The SELECTION procedure searches the string array FILETITLES to see if a
library process with the name specified by USERSFILE is already running. If so, the
SELECTION procedure selects the task variable of the requested library process. If no
library process with the requested name is yet running, SELECTION initiates a new
library process and stores the name of the process in the FILETITLES array.

After SELECTION has selected a task variable, it invokes the procedure MCPCHECK,
passing the selected task variable as a parameter. The MCPCHECK procedure informs
the system to link the user process to the library process with the specified task variable.
The actual library linkage is not performed until SELECTION has been eXited.

86000494-010

Using Libraries

ALGOL User Program #1

The following ALGOL user program invokes the ALGOL dynamic library in the
previous example, OBJECT/FILEMANAGER/Lffi. This user program reads information
from the file MYFILE by assigning a value of "MYFILE" to the LIBP ARAMETER
library attribute and then invoking the procedure READ FILE. The user program then
writes information to a file called OTHERFILE by canceling the library, changing the
LIBP ARAMETER library attribute to "OTHERFILE", and invoking the WRITEFILE
procedure.

BEGIN
LIBRARY L (TITLE = "OBJECT /FI LEMANAGER/LIB. ") ;
PROCEDURE READFILE;

LIBRARY L;
PROCEDURE WRITEFILE;

LIBRARY L;

L. LIBPARAMETER : = "MYFI LE" ;

READFILE;

CANCEL (L);

L. LIBPARAMETER : = "OTHERFI LE"; % LIBPARAMETER CAN BE CHANGED
% BECAUSE THE LIBRARY HAS BEEN
% CANCELED.

WRITEFILE;
END PROGRAM.

86000494-010 18-51

Using Libraries

ALGOL Library: OBJECT/SAMPLE/LIBRARY

18-52

The following ALGOL library, compiled as OBJECT/SAMPLE/LIBRARY, uses direct
library linkage:

BEGIN
ARRAY MSG[0:120];

INTEGER PROCEDURE FACT(N);
INTEGER N;

BEGIN
IF N LSS 1 THEN

FACT := 1
ELSE

FACT := N * FACT(N - 1);
END; % OF FACT.

PROCEDURE DATEANDTIME(TOARRAY, WHERE);
ARRAY TOARRAY[*];
INTEGER WHERE;

BEGIN
REAL T;
POINTER PTR;

T := TIME(7);
PTR := POINTER(TOARRAY, 8) + WHERE;
CASE T. [5:6] OF

BEGIN
0: REPLACE PTR:PTR BY II SUNDAY , ";
1: REPLACE PTR:PTR BY II MONDAY , ";
2: REPLACE PTR:PTR BY "TUESDAY, ";
3: REPLACE PTR:PTR BY II WEDNESDAY , ";
4: REPLACE PTR:PTR BY "THURSDAY, II;
5: REPLACE PTR:PTR BY "FRIDAY, ";
6: REPLACE PTR:PTR BY "SATUR~AY, II;

END;
REPLACE PTR BY T. [35:6] FOR 2 DIGITS, II_II,

T. [29:6] FOR 2 DIGITS, "_",
T.[47:12] FOR 4 DIGITS, ", ",
T.[23:6] FOR 2 DIGITS, ":",
T.[17:6] FOR 2 DIGITS, ":",
T.[11:6] FOR 2 DIGITS;

END; % OF DATEANDTIME.

EXPORT FACT, DATEANDTIME AS "DAYTIME";
REPLACE POINTER(MSG, 8) BY

II _ SAMPLE LIBRARY STARTED",
II II FOR 94;

DATEANDTIME(MSG, 60);

86000494-010

Using Libraries

DISPLAY(MSG);
FREEZE(TEMPORARY);
REPLACE POINTER(MSG, 8)+ 19 BY "ENDED ";
DATEANDTIME(MSG, 60);
DISPLAY(MSG);
END.

ALGOL Library: OBJECT/SAMPLE/DYNAMICLIB

The following ALGOL library, compiled as OBJECT/SAMPLE/DYNAMICLIB,
uses dynamic and indirect library linkage. This library references the library
OBJECT/SAMPLE/LIBRARY in the preceding example:

BEGIN
TASK LIB1TASK, LIB2TASK;
LIBRARY SAMLIB (TITLE= "OBJECT /SAMPLE/LIBRARY. ") ;
INTEGER PROCEDURE FACT(N);

INTEGER N;
LIBRARY SAMLIB;

PROCEDURE DYNLIB1;
% LIBRARY PROVIDED DYNAMICALLY AND INDIRECTLY

BEGIN % PRINTS DATE WITH TIME.
LIBRARY SAMLIB (TITLE="OBJECT /SAMPLE/LIBRARY • ") ;
PROCEDURE DAYTIME(TOARRAY, WHERE);

ARRAY TOARRAY[*];
INTEGER WHERE;
LIBRARY SAMLIB;

EXPORT DAYTIME;
FREEZE(TEMPORARY);
END; % OF DYNLIB1.

PROCEDURE DYNLIB2;
% LIBRARY PROVIDED DYNAMICALLY

8600 0494-000

BEGIN % PRINTS DATE WITHOUT TIME.
PROCEDURE DAYTIME(TOARRAY, WHERE);

ARRAY TOARRAY[*];
INTEGER WHERE;

BEGIN
REAL T;
T := TIME(7);
REPLACE POINTER(TOARRAY, 8) + WHERE

BY T.[35:6] FOR 2 DIGITS, "_",
T.[29:6] FOR 2 DIGITS, "_",
T.[47:12] FOR 4 DIGITS;

END; % OF DAYTIME.
EXPORT DAYTIME;
FREEZE(TEMPORARY);
END; % OF DYNLIB2

18-53

Using Libraries

END;

EXPORT PLIBl_A, PLIBl_B;
FREEZE(TEMPORARY);
END.

The third program (MYLIB2.) is a library that uses another library (MYLIB1.).

BEGIN
LIBRARY L(TITLE="OBJECT /MYUB1.");
REAL PROCEDURE PLIBl_B (A, B);

VALUE A;
REAL A, B;
LIBRARY L;

REAL PROCEDURE PLIB2_A (R);
VALUE R;
REAL R;
BEGIN
REAL X, Y;

PUBl B (X, Y)

PUB2 A :=Y;
END;

BOOLEAN PROCEDURE PLIB2_B (X);
VALUE X;
REAL X;
BEGIN

END;

EXPORT PLIB2_A, PLIB2_B;
FREEZE(TEMPORARY);
END.

%% Procedure in MYLIBl; circular linkage
%% is allowed, because MYLIBl is frozen.

ALGOL I ncorrect Circular Libraries

18-56

The following are examples of libraries and user programs that use circular linkage
incorrectly.

8600 0494-000

Using Libraries

Example 1: Indirect Self Referencing

The following is the user program OBJECT/INDffiECT/CALL. This program invokes
procedure X in the library OBJECT/INDIRECT/LIBl.

BEGIN
LIBRARY L(TITLE="OBJECT /INDIRECT /LIB1. ") ;
PROCEDURE X;

X;
END.

LIBRARY L;

The following is the library OBJECT/INDIRECT/LIBl. This library provides procedure
X indirectly by importing it from another library, OBJECT/INDIRECT/LIB2.

$SHARING = SHAREDBYALL
BEGIN

LIBRARY L(TITLE="OBJECT /INDI RECT /LIB2. ") ;
PROCEDURE X;

LIBRARY L;
EXPORT X;
FREEZE(PERMANENT);

END.

The following is the library OBJECT/INDIRECT/LIB2. This library also
provides procedure X indirectly, in this case by importing procedure X from
OBJECT/INDIRECT/LIBI.

$SHARING = SHAREDBYALL
BEGIN

LIBRARY L(TITLE="OBJECT /INDIRECT /LIBl. ") ;
PROCEDURE X;

LIBRARY L;
EXPORT X;
FREEZE(PERMANENT);

END.

This chain of linkages is completely circular. That is, the chain leads back not just
to the original library, .but also to the original procedure. When the user program
invokes procedure X, the system discontinues the program and displays the message
"CURRENT CmCULAR LIBRARY REFERENCE STRUCTURE IS NOT ALLOWED."

8600 0494-000 18-57

Using Libraries

Example 2: Direct Self Referencing

The following ALGOL library, called OBJECT/ALGOL/SELF/LIB, attempts to provide
a procedure by importing it from the same procedure in the same library. When a user
process attempts to invoke procedure X in this library, the user process hangs. The
Y (Status Interrogate) system command shows a STACK STATE of WAITING ON
AN EVENT, but the process does not appear in the W (Waiting Mix Entries) system
command display. This situation continues until an operator enters a DS (Discontinue)
system command or until the system is halt!loaded.

$SHARING = SHAREDBVALL
BEGIN

LIBRARV L(TITLE="OBJECT /ALGOL/SELF/LIB.");
PROCEDURE X;

LIBRARV L;
EXPORT X;
FREEZE(TEMPORARV);

END.

Example 3: Libraries that Wait on Each Other

18-58

The following user program invokes a procedure in the library OBJECT/LIB/WAITl.

BEGIN
LIBRARV L(TITLE="OBJECT /LIB/WAITI. ") ;
PROCEDURE X;

X;
END.

LIBRARY L;

The following is the library OBJECT/LIB/W AITl. Before freezing, this library invokes a
procedure in the library OBJECT/LIB/W AIT2.

$SHARING = SHAREDBYALL
BEGIN

LIBRARV L(TITLE="OBJECT /LIB/WAIT2. ") ;
PROCEDURE Xi

LIBRARV L;
PROCEDURE V;

DISPLAV ("V");
EXPORT X, V;
X;
FREEZE(TEMPORARV);

END.

The following is the library OBJECT/LIB/W AIT2. Before freezing, this library invokes a
procedure in the library OBJECT/LIB/WAITl.

8600 0494-000

$SHARING = 5HAREDBYALL
BEGIN

LIBRARY L (TITLE=1I0BJECT /LIB/WAITI. II) ;
PROCEDURE Y;

LIBRARY L;
PROCEDURE X;

DISPLAY ("X");
EXPORT X, Y;
Y;
FREEZE(TEMPORARY);

END.

Using Libraries

Because OBJECT/LIB/W AITI was initiated through the library linkage mechanism,
is SHAREDBYALL, and has not yet frozen, OBJECT/LIB/WAIT2 waits for
OBJECT/LIB/W AIT! to freeze. Both libraries are then waiting for each other to freeze.
The user process hangs indefinitely. The Y (Status Interrogate) system command shows
the user process to have a STACK STATE ofW AITING ON AN EVENT, but the user
process does not appear in the W (Waiting Mix Entries) system command display. This
situation continues until an operator enters a DS (Discontinue) system command or until
the system is halt/loaded.

C Library and ALGOL User Program

The following pair of examples illustrate the ability of an ALGOL calling program to
indirectly access character data in a C library.

The following C library exports a procedure named WRITELINE. This procedure accepts
a parameter that is a pointer to a string of characters. The procedure writes the string
to a file named TEST.

#include <stdio.h>
#include <stdlib.h>
FILE * pf;

asm WRITELINE(char * pc)
fputs(pc, pf);
fputc (' \n' ,pf) ;

void cleanup(void) {

mainO

/* called after main exits, i.e., after thaw */
fputs("all done\n", pf);
fclose(pf);

pf = fopen("TEST Ii ~ IIW");'
atexit(cleanup);

86000494-000 18-59

Using Libraries

18-60

The C library is called by the following ALGOL user program:

BEGIN

LIBRARY CLIB (LIBACCESS = BYTITLE, TITLE="OBJECT /STREAM/C. ") ;
, INTEGER PROCEDURE MALLOC(BYTES);

VALUE BYTES;
INTEGER BYTES;
LIBRARY CLIB;

INTEGER PROCEDURE FREE(CPTR);
VALUE CPTR;
INTEGER CPTR;
LIBRARY CLIB;

INTEGER PROCEDURE HEAPTOPTR(CPTR, APTR);
VALUE CPTR
INTEGER CPTR
POINTER APTR ;
LIBRARY CUB;

INTEGER PROCEDURE WRITELINE(CPTR);
VALUE CPTR
INTEGER
LIBRARY CUB;

PROCEDURE XFER(S);
VALUE S
STRING S

BEGIN
POINTER APTR;
INTEGER CPTR;

CPTR ;

CPTR := MALLOC (LENGTH(S) + 1);
HEAPTOPTR(CPTR, APTR);
REPLACE APTR BY S, 48 "00";
WRITELINE(CPTR);
FREE (CPTR);

END XFER;

XFER("HELLO WORLD II
);

XFER("THIS IS AN EXAMPLE"};

END.

In addition to importing WRITELINE from the C library, this program also imports
the procedures MALLOC, HEAPTOPTR, and FREE. These procedures are implicitly
created by the #include < stdlib.h > statement in the C library, and are referred to in C
as _ rnalloc _t, _heap_to ytr _t, and -.free _to

The ALGOL program includes the XFER procedure, which accepts a string parameter
. and writes it to the file TEST by making appropriate calls on the C library. First,
XFER invokes the MALLOC procedure, which allocates memory space for the string.
MALLOC returns an integer, CPTR, which indicates the position of the string in
memory.

8600 0494-000

Using Libraries

CPTR can be used as a pointer only within the C library itself. To write data into
the memory area allocated by MALLOC, the ALGOL program must first assign an
ALGOL-style pointer to that memory location. The program does this with the call on
HEAPTOPTR. The ALGOL program then uses the REPLACE statement to write the
string to the area allocated for it.

The ALGOL program then invokes the WRITELINE procedure, passing CPTR as a
parameter. The WRITE LINE procedure in the C library uses CPTR to locate the string
that is to be written to the file.

C User Program Passing Array to ALGOL Library

The following examples illustrate the C syntax for calling a library. The examples also
illustrate the abilitY,to pass arrays between C and ALGOL.

The following is a file named FOO, which is specified by a #include statement in the C
user program. This file contains the import declaration for a procedure called LC.

extern "ALGOL" void LC (char*, char (&) [J, int, int&, _heap_t,
_errno_t);

In the Faa file, the use of the string "ALGOL" has the following effects on the
declaration:

• The return type of void causes the declaration to be interpreted as an untyped
procedure rather than an integer procedure.

• Normally, C passes all parameters by value. The string "ALGOL" identifies LC
as a non-C procedure, thereby allowing parameters to be passed by reference.
Call-by-reference parameters are denoted by the ampersand (&) operator. For
example, int& matches a call-by-reference integ~r, and char (&)[] matches a
call-by-reference unbounded EBCDIC array.

• The string "ALGOL" also allows some hidden parameter types to be included in the
import procedure declaration. In Faa, the hidden parameters are _heap _t and
_errno _to These parameters are supplied by the compiler, and are not mentioned
in the statement in the C program that invokes the imported procedure. The
_heap _t parameter passes the C program's heap as an EBCDIC array with 0 lower
bound. The _ errno _t parameter passes the predeclared global variable errno as a
call-by-name integer.

Notice that the import procedure name, LC, is given in all uppercase. This is because
many languages, including ALGOL, do not allow library objects to be exported with
names containing lowercase letters.

8600 0494-000 18-61

Using Libraries

18-62

The following is the C user program FOO/C.

#include <stdio.h>
#include IfoO" (bytitle=1I0BJECT/FOO/A II

, intname=IIFOO II)

main (int argc, char *argv []) {
char buf [10];
int i, len;

for (i=l; i<argc; i++) {
errno = 0;
LC (argv [i], buf, sizeof (buf), len);
if (errno != 0) {

printf ("string too long: %d > %d\n ll
, len-1, sizeof (buf)-l);

errno = 0;
else {
printf (1I(%2d) \,,%S\" -> \"%sVI\nll, len-1, argv [i], buf);

The #include ''faa'' line in this user program serves as the library declaration. This
program calls the imported procedure LC to convert some text to lowercase letters.
Notice that the invocation of LC has only four parameters supplied. The compiler
automatically supplies parameters for _heap _t and _ errno _t as described previously.

After invoking LC, the program uses the variable errno to read and update the
error value returned by the library in the _ errno _t parameter. Notice that the C
program initializes errno to 0 before calling LC. The library functions responsible for
assigning errno only modify the errno value if an error occurs. These functions do not
automatically assign a value of 0 to errno when a valid result occurs, as the 0 would
overwrite any value left to record a previous error.

8600 0494-000

Using Libraries

The following is the ALGOL library Faa/A, which is used by the C program FaD/C.

BEGIN
PROCEDURE LC (PTR, BUF, BUFSIZE, LEN, HEAP, ERRNO);

VALUE PTR, BUFSIZE;
INTEGER PTR, BUFSIZE;
EBCDIC ARRAY BUF [*], HEAP[0];
INTEGER LEN, ERRNO;

BEGIN
DEFINE MAX_LEN = 65536 #;
POINTER P;
INTEGER L;
TRANSLATETABLE DOWNCASE(EBCDIC TO EBCDIC,

"ABCDEFGHIJKLMNOPQRSTUVWXYZ" TO "abcdefghijklmnopqrstuvwxyz");
SCAN P:HEAP [PTR] FOR L:MAX LEN UNTIL = 48"00";
LEN := MAX_LEN - L + 1; % +1 for trailing null
IF LEN > BUFSIZE THEN BEGIN

ERRNO := 1;
END ELSE BEGIN

REPLACE BUF [0] BY HEAP [PTR] FOR LEN WITH DOWNCASE;
END IF;

END;

EXPORT LC;
FREEZE(TEMPORARY);

END.

In this example, the BUF parameter is specified as unbounded in order to match the
char (&) [] parameter in the Faa file. The HEAP parameter is specified with a lower
bound of 0 because C passes the _heap _t parameter this way.

Note that the PTR parameter is declared as an integer. The program is able to use PTR
as a pointer by including it in the pointer expression HEAP [PTR]. This technique works
reliably only if the MEMORY_MODEL compiler control option in the C program specifies
a one-dimensional memory model. If the C program had specified a two-dimensional
memory model, this ALGOL program would have to use the HEAPTOPTR function to
convert the integer value to a pointer.

The SCAN statement and the LEN assignment statement both rely on the fact that C
terminates each string with a null character.

As noted in the description of the C program, this procedure assigns a value to ERRNO
only if an error is encountered.

8600 0494-000 18-63

Using Libraries

C User Program Passing File to ALGOL Library

18-64

The following is an ALGOL library called FOO/FILE/A:

BEGIN
INTEGER PROCEDURE STATIONNAME (F, MALLOC, COPYTOPTR);

FILE F;
INTEGER PROCEDURE MALLOC (SIZE);

VALUE SIZE;
INTEGER SIZE;
FORMAL;

PROCEDURE COPYTOPTR (LEN, BUF, OFF, PTR);
VALUE LEN, OFF, PTR;
INTEGER LEN, OFF, PTR; EBCDIC ARRAY BUF [*];
FORMAL;

BEGIN
EBCDIC ARRAY T [0:300];
POINTER P;
INTEGER PTR, LEN;

REPLACE P:T BY F(l).STATIONNAME;
IF F.ATTERR THEN BEGIN

REPLACE P:T BY "<attribute error>.";
END IF;
REPLACE P-l BY 48"0011

;

LEN := OFFSET (P);
PTR := MALLOC (LEN);
COPYTOPTR (LEN, T, 0, PTR);
STATIONNAME := PTR;

END;
EXPORT STATIONNAME;
FREEZE (TEMPORARY);

END.

FOO/FILE/A exports a single procedure called STATIONNAME. The STATIONNAME
procedure accepts three parameters: a remote file called F, the procedure MALLOC,
and the procedure COPYTOPTR. The STATIONNAME procedure reads the
STATIONNAME attribute of the remote file into array T. The STATIONNAME
procedure uses the MALLOC function to allocate space in the C user program heap. The
STATIONNAME procedure then uses the COPYTOPTR function to copy the contents of
array T into the C user program heap. The STATIONNAME procedure return value
stores the length of the STATIONNAME file attribute value.

The following is the file FOO/FILE/H, which is a header file used by the C user program
to declare the imported procedure STATIONNAME:

extern "ALGOL" char *STATIONNAME (_file_t, _malloc_t,
_copy_to_ptr_t);

8600 0494-000

Using Libraries

Of the items in this header file, -.file _t corresponds to parameter F in the ALGOL
library; _ rnalloc _t corresponds to MALLOC; and _copy_to ytr _t corresponds to
COPYTOPTR.

The following is the C user program, FOO/FILE/C:

#include <stdio.h>
#include IIfoo.file.hlt (bytitle=IIOBJECT/FOO/FILE/A II , intname=IILIB II)

mai n () {
printf (llthis printf implicitly opens stdout.\n");
printf ("title=\II%sVI\n", STATIONNAME (stdout->_file_no»;

The first printf statement in the C user program implicitly opens the file stdout as
a remote file. The second printf statement implicitly invokes the STATIONNAME
procedure and displays the STATIONNAME file attribute value stored in the C user
program heap.

Note that the STATIONNAME invocation does not mention the _malloc_t and
_copy_to ytr _t parameters, because these are automatically passed by the C compiler.
However, the STATIONNAME invocation explicitly passes -.file _t a parameter of type
int, which the C compiler changes into a parameter of type file, as required by the
ALGOL library. The int value that is passed should always be extracted from a FILE *
pointer, as shown by the - > Jile _no clause in this example.

COBOL(68) Library: OBJECT/SAMPLEl

The following COBOL(68) library compiled as OBJECT/SAMPLEl is referenced in
various examples in this section. The procedure exported by this library is named
PROCEDUREDMSION. This library is PERMANENT by default.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PARAM PIC 9(11) COMP-l REF.
PROCEDURE DIVISION USING PARAM.
PI.

8600 0494-000

DISPLAY "I AM SAMPLE1".
DISPLAY liMY PARAMETER IS II PARAM.
EXIT PROGRAM.

18-65

Using Libraties

COBOL(68) Library: OBJECT/SAMPLE2

The following COBOL(68) library compiled as OBJECT/SAMPLE2 is referenced in
various examples in this section. This library is TEMPORARY; therefore, when it is no
longer in use it unfreezes and resumes running as a regular program. The procedure
exported by this library is named ENTRYPOINT.

$ SET TEMPORARY
IDENTIFICATION DIVISION.
PROGRAM-ID. ENTRYPOINT.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PARAM PIC 9(11) COMP REF.
PROCEDURE DIVISION USING PARAM.
PI.

DISPLAY II I AM SAMPLE2 11
•

DISPLAY liMY PARAMETER IS " PARAM.
EXIT PROGRAM.

COBOL74 Library: OBJECT/SAMPLE4

The following COBOL74 library compiled as OBJECT/SAMPLE4 is referenced
in various examples in this section. The entry point to this library is named
PROCEDUREDIVISION. This library is PERMANENT by default.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PARAM PIC 9(11) BINARY.
PROCEDURE DIVISION USING PARAM.
PI.

DISPLAY III AM SAMPLE4 11
•

DISPLAY liMY PARAMETER IS II PARAM.
EXIT PROGRAM.

COBOL74 Library: OBJECT/SAMPLES

18-66

The following COBOL74 library is referenced in various examples in this section.
This library is TEMPORARY; therefore, when it is no longer in use it unfreezes and
resumes running as a regular program. The FEDLEVEL option is set to 5 to allow the
PROGRAM-ID to be used as the entry point name.

$ SET FED LEVEL = 5
$ SET TEMPORARY

IDENTIFICATION DIVISION.
PROGRAM-ID. ENTRYPOINT.
ENVIRONMENT DIVISION.

86000494--000

Using Libraries.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 PARAM PIC 9(11) COMPo
PROCEDURE DIVISION USING INTEGER (PARAM).
PI.

DISPLAY III AM SAMPLES II •
DISPLAY liMY PARAMETER IS II PARAM.
EXIT PROGRAM.

COBOL(68) User Program

The following program invokes various COBOL(68) and ALGOL libraries described in
this section:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PARAM1 PIC 9(11) COMPo
77 PARAM2 PIC 9(11) COMP-1.
77 RETURNVAL1 PIC 9(11) COMPo
77 RETURNVAL2 PIC 9(11) DISPLAY.
01 TOARRAY COMP WITH LOWER-BOUNDS.

03 ELEMENT PIC 9(6) COMP OCCURS 13.
77 WH PIC 9(11) COMPo
PROCEDURE DIVISION.
PI.

* CALL COBOL (68) LIBRARY NAMED "OBJECT /SAMPLE!"

CALL "PROCEDUREDIVISION OF OBJECT/SAMPLE1" USING PARAM1.

* CALL COBOL(68) LIBRARY NAMED· "OBJECT/SAMPLE!" USING TITLE ATTRIBUTE

CHANGE ATTRIBUTE TITLE OF IOBJECT/SAMPLE3" TO
IOBJECT/SAMPLE1.".

CALL "PROCEDUREDIVISION IN OBJECT/SAMPLE3" USING PARAM2

* CALL COBOL(68) LIBRARY NAMED "OBJECT/SAMPLE2" WHOSE ENTRYPOINT IS
* NAMED ENTRYPOINT

CALL "ENTRYPOINT OF OBJECT /SAMPLE2" USING PARAMI.

* CALL COBOL(68) LIBRARY NAMED "OBJECT /SAMPLE1"
* USING ANSI74 IPC SYNTAX; CANCEL THAT COBOL(68) LIBRARY

CALL "OBJECT/SAMPLE1" USING PARAM2.
CANCEL 10BJECT/SAMPLEl".

* CALL DIRECT ALGOL LIBRARY.
* INTERNAL NAME IS "INTLIB"; TITLE IS "OBJECT/SAMPLE/LIBRARY"

8600 0494-000 18-67

Using Libraries

CHANGE ATTRIBUTE TITLE OF "INTLIB"
TO "OBJECT/SAMPLE/LIBRARY. II.

CALL "FACT OF INTLIB"
USING PARAM1 GIVING RETURNVAL1.

* CALL DYNAMIC ALGOL LIBRARY
* TITLE IS "OBJECT/SAMPLE/DYNAMICLIB"
* SELECTION PROCEDURE PARAMETER IS "WITH TIME"

CHANGE ATTRIBUTE LIBPARAMETER OF 1I0BJECT /SAMPLE/DYNAMICLIB II

TO IIWITH NAME".
CALL IIDAYTIME IN OBJECT/SAMPLE/DYNAMICLIB II

USING TOARRAY, WHo

STOP RUN.

COBOl74 User Program

18-68

The following COBOL74 program uses various ALGOL and COBOL74llbraries
described in this section:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 PARAM1 PIC 9(11) BINARY.
77 PARAM2 PIC 9(11) COMPo
77 RETURNVALI PIC 9(11) BINARY.
77 RETURNVAL2 PIC 9(11) COMPo
01 TOARRAY BINARY WITH LOWER-BOUNDS.

03 ELEMENT PIC 9(6) BINARY OCCURS 13.
77 WH PIC 9(11) BINARY.
PROCEDURE DIVISION.
PI.

* CALL COBOL74 LIBRARY NAMED 1I0BJECT/SAMPLE4 11

CALL "PROCEDUREDIVISION OF OBJECT /SAMPLE4" USING PARAMl.

* CALL COBOL74 LIBRARY NAMED "OBJECT/SAMPLE4" USING TITLE ATTRIBUTE

CHANGE ATTRIBUTE TITLE OF "OBJECT/SAMPLE6" TO
"OBJECT/SAMPLE4.".

·CALL "PROCEDUREDIVISION IN OBJECT/SAMPLE6"
USING INTEGER (PARAM2).

* CALL COBOL74 LIBRARY NAMED "OBJECT/SAMPLE5" WHOSE ENTRYPOINT IS
* NAMED ENTRYPOINT

CALL "ENTRYPOINT OF OBJECT /SAMPLE5" USING PARAM1.

8600 0494-000

Using Libraries

* CALL COBOL74 LIBRARY NAMED IIOBJECT/SAMPLE4 11

* USING ANSI74 IPC SYNTAX; CANCEL THAT COBOL74 LIBRARY

CALL IIOBJECT/SAMPLE4" USING INTEGER (PARAM2).
CANCEL IIOBJECT/SAMPLE4 11

•

* CALL DIRECT ALGOL LIBRARY
* INTERNAL NAME IS II INTLIBII; TITLE IS IIOBJECT /SAMPLE/LIBRARY"

CHANGE ATTRIBUTE TITLE OF "INTLIB"
TO "OBJECT /SAMPLE/LIBRARY II •

CALL II FACT OF INTLIBII
USING PARAMl GIVING RETURNVAL1.

* CALL DYNAMIC ALGOL LIBRARY
* TITLE IS IIOBJECT/SAMPLE/DYNAMICLIB II
* SELECTION PROCEDURE PARAMETER IS IIWITH TIMEII

CHANGE ATTRIBUTE LIBPARAMETER OF IIOBJECT/SAMPLE/DYNAMICLIB"
TO IIWITH NAME".

CALL IIDAYTIME IN OBJECT/SAMPLE/DYNAMICLIB II
USING TOARRAY, WHo

STOP RUN.

ALGOL User Program #3

The following ALGOL program uses various COBOL(68) libraries described in this
section:

BEGIN

INTEGER PARAM;

LIBRARY COBOLLIB (TITLE = IIOBJECT /SAMPLEl. ") ;
LIBRARY OTHERLIB (TITLE = IIOBJECT /SAMPLE5. ") ;

PROCEDURE PROCEDUREDIVISION (N);
VALUE N;
INTEGER N;
LIBRARY COBOLLIB;

PROCEDURE ENTRYPOINT (N);
VALUE N;
INTEGER N;
LIBRARY OTHERLIB;

PARAM := 12345;
PROCEDUREDIVISION (PARAM);
DISPLAY (STRING(PARAM,*»;

8600 0494-000 18-69

Using Libraries

PARAM := 12345;
ENTRYPOINT (PARAM);
DISPLAY (STRING(PARAM,*»;

END.

COBOl85 libraries and User Program

The following is a COBOL85 library named TASKM/COBOL85/LIBRARY:

18-70

000100$ RESET LIST SET ERRORLIST LINEINFO
000200 IDENTIFICATION DIVISION.
000300 PROGRAM-ID. EXPLICIT -LIBRARY LIBRARY.
000400 ENVIRONMENT DIVISION.
000500 INPUT-OUTPUT SECTION.
000600 FILE-CONTROL.
000700 SELECT FL-l ASSIGN TO DISK.
000800 DATA DIVISION.
000900 FILE SECTION.
001000 FD FL-1 GLOBAL.
001100 01 FL-1-REC PIC X(80) GLOBAL.
001200 WORKING-STORAGE SECTION.
001300 PROGRAM-LIBRARY SECTION.
001400 LB EXPLICIT-LIBRARY EXPORT
001500 ATTRIBUTE SHARING IS SHAREDBYRUNUNIT.
001600 ENTRY PROCEDURE USERCODE.
001700 ENTRY PROCEDURE WRITER.
001800 PROCEDURE DIVISION.
001900 P-1.
002000 OPEN OUTPUT FL-1.
002100
002200
002300
002400
002500
002600
002700
002800
002900
003000
003100
003200
003300
003400
003500
003600

.003700

CALL "DISPLAYER".
CALL SYSTEM FREEZE TEMPORARY.
CLOSE FL-1 SAVE.
EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. WRITER.
DATA DIVISION.
PROCEDURE DIVISION.
P-l.

MOVE "DATA WRITTEN FROM LIBRARY" TO FL-I-REC.
WRITE FL-1-REC.
EXIT PROGRAM.

END PROGRAM WRITER.
IDENTIFICATION DIVISION.
PROGRAM-ID. DISPLAYER.
PROCEDURE DIVISION.
P-l.

003800 DISPLAY liTHE EXPLICIT LIBRARY HAS BEEN ENTERED.II
003900 EXIT PROGRAM.
004000 END PROGRAM DISPLAYER.
004100 IDENTIFICATION DIVISION.

8600 0494-000

Using Libraries

004200
004300
004400
004500
004600
004700
004800
004900
005000
005100
005200
005300
005400
005500
005600
005700

. 005800
005900
006000
006100
006200
006300
006400
006500
006600
006700
006800
006900
007000
007100
007200
007300

PROGRAM-ID. USERCODE.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 REC-I.

02 BUFFER PIC X(20).
02 USERNAME PIC X(20).
02 DIRECTORIES PIC 9(4) COMPo

01 MAX-DIRECTORIES PIC 9(4) COMP VALUE 17 GLOBAL.
LINKAGE SECTION.
01 STR PIC X(80).
01 USER-CODE PIC X(20).
PROCEDURE DIVISION USING STR USER-CODE.
P-1.

UNSTRING STR DELIMITED BY II /" OR II (II OR II) II
INTO BUFFER USERNAME TALLYING IN DIRECTORIES.
MOVE USERNAME TO USER-CODE.
IF DIRECTORIES IS GREATER THAN MAX-DIRECTORIES

CALL "ERROR-MESSAGE II USING DIRECTORIES.
EXIT PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM-ID. ERROR-MESSAGE.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 EXTRA-DIRECTORIES PIC 9(4) COMPo
LINKAGE SECTION.
77 TOTAL-DIRECTORIES PIC 9(4) COMPo
PROCEDURE DIVISION USING TOTAL-DIRECTORIES.
P-I.

SUBTRACT MAX-DIRECTORIES FROM TOTAL-DIRECTORIES
GIVING EXTRA-DIRECTORIES.

DISPLAY IITHERE WERE II EXTRA-DIRECTORIES
IIEXTRA DIRECTORIES II •

007400 EXIT PROGRAM.
007500 END PROGRAM ERROR-MESSAGE.
007600 END PROGRAM USERCODE.
007700 END PROGRAM EXPLICIT-LIBRARY.

The program TASKM/COBOL85/LmRARY illustrates several library features that
distinguish COBOL85 libraries from libraries in earlier COBOL implementations. These
features include:

• An explicit FREEZE statement at line 2200, which includes the freeze duration
option of TEMPORARY.

• The PROGRAM-LmRARY SECTION, which includes an explicit export
declaration at lines 1400-1700. The declaration specifies a sharing option of
SHAREDBYRUNUNIT and lists USERCODE and WRITER as the names of nested
programs to be exported ..

• Three nested programs, including the two specified in the export declaration:
USERCODE, at lines 4100-7600; and WRITER, at lines 2500-3300.

8600 0494-000 18--71

Using Libraries

18-72

• Local variables. The exported nested program USERCODE includes declarations
of the data items REC-l at line 4500 and MAX-DIRECTORIES at 4900. Note that
these local variables are reinitialized each time the USERCODE nested program is
invoked. You can cause the values of these variables to be preserved by adding an
IS INITIAL clause to the PROGRAM-ID paragraph at line 4200.

The following is another COBOL85 library called TASKM/COBOL85/PROCEDURE:

000100$RESET LIST SET ERRORLIST LINEINFO
000200$SHARING = SHAREDBYRUNUNIT
000300$LIBRARYPROG
000400 IDENTIFICATION DIVISION.
000500 PROGRAM-ID. IMPLICIT-LIBRARY.
000600 ENVIRONMENT DIVISION.
000700 DATA DIVISION.
000800 WORKING-STORAGE SECTION.
000900 77 SWAP PIC X(10).
001000 LINKAGE SECTION.
001100 01 A-REC.
001200 02 FLD-1 'PIC X(10).
001300 02 FLD-2 PIC X(10).
001400 PROCEDURE DIVISION USING A-REC.
001500 P-l.
001600 MOVE FLD-1 TO SWAP.
001700 MOVE FLD-2 TO FLD-1.
001800 MOVE SWAP TO FLD-2.
001900 EXIT PROGRAM.

The library T ASKM/COBOL85/PROCEDURE is designed to function much as a
COBOL74 library. There is no explicit export declaration or freeze statement, and the
entire PROCEDURE DMSION is exported. However, unlike COBOL74, COBOL85
requires the LIBRARYPROG compiler option to be set in order to indicate that the
program will function as a library.

The following is a COBOL85 user program called TASKM/COBOL85/PROGRAM. This
program calls the two COBOL85 libraries described previously:

000100$ RESET LIST SET ERRORLIST LINEINFO
000200 IDENTIFICATION DIVISION.
000300 PROGRAM-ID. DRIVER.
000400 ENVIRONMENT DIVISION.
000900 DATA DIVISION.
001500 WORKING-STORAGE SECTION.
001600 01 THE-TITLE PIC X(80).
001700 01 USERCODES.
001800 02 USERCODE-1 PIC X(20).
001900 02 USERCODE-2 PIC X(20).
002000 LOCAL-STORAGE SECTION.
002100 LD PARAM-1.
002200 01 P-REC-1.
002300 02 A-FLD-1 PIC X(10).
002400 02 A-FLD-2 PIC X (10).

8600 0494-000

Using Libraries

002500 LD PARAM-2.
002600 01 P-REC-2 PIC X(80).
002700 01 P-REC-3 PIC X(20).
003100 PROGRAM-LIBRARY SECTION.
003200 LB LIB-ONE IMPORT
003300 ATTRIBUTE FUNCTIONNAME IS "THELIBRARY"
003400 LIBACCESS IS BYTITLE.
003500 ENTRY PROCEDURE WRITER.
003600 ENTRY PROCEDURE USERCODE WITH PARAM-2
003700 USING P-REC-2 P-REC-3.
003800 LB LIB-TWO IMPORT
003900 ATTRIBUTE TITLE IS "OBJECT/TASKM/COBOL85/PROCEDURE".
004000 ENTRY PROCEDURE PROCEDUREDIVISION WITH PARAM-1
004100 USING P-REC-l.
004500 PROCEDURE DIVISION.
004600 P-1.
004700 CHANGE ATTRIBUTE TITLE OF LIB-ONE
004800 TO "OBJECT /TASKM/COBOL85/LIBRARY" •
005000 CALL WRITER.
005100 CALL WRITER OF LIB-ONE.
005200 MOVE ATTRIBUTE TITLE OF LIB-TWO TO THE-TITLE.
005300 CALL USERCODE
005400 USING THE-TITLE USERCODE-l.
005500 MOVE ATTRIBUTE TITLE OF LIB-ONE TO THE-TITLE.
005600 CALL "USERCODE IN OBJECT/TASKM/COBOL85/LIBRARY"
005700 USING THE-TITLE USERCODE-2.
005800 CALL PROCEDUREDIVISION OF LIB-TWO
005900 USING USERCODES.
006000 CALL IOBJECT/TASKM/COBOL85/PROCEDURE"
006100 USING USERCODES.
006200 DISPLAY USERCODES.
006300 STOP RUN.

The program TASKM/COBOL85/PROGRAM illustrates the explicit library declarations
and import declarations provided by COBOL85. Thus, the PROGRAM-LmRARY
SECTION at lines 3100-4400 includes declarations of the libraries Lm-ONE and
Lm-TWO. These library declarations include library attribute assignments as well as
import declarations for WRITER, USERCODE, and PROCEDUREDMSION.

TASKM/COBOL85/PROGRAM includes examples of the following types of CALL
statements:

• A CALL statement that invokes an explicitly declared import object. The statements
at lines 5000 and 5300-5400 are examples that invoke import objects declared in the
PROGRAM-LIBRARY SECTION.

• A CALL statement that invokes an explicitly declared import object in an explicitly
specified library. The statements at lines 5100 and 5800 refer to the LIB-ONE and
LIB-TWO declarations in the PROGRAM-LIBRARY SECTION.

8600 0494--000 18--73

Using Libraries

• A CALL statement that uses a string literal to specify the library
object code file title. The statement at line 6000 invokes the library
T ASKMICOBOL85/PROCEDURE. The CALL statement does not need to specify
the name of a particular import object, as the library in question exports only the
PROCEDUREDMSION.

• A CALL statement that uses a string literal to specify both the library object code
file title and the import object name. The statement at line 5600 invokes the object
USERCODE in the library OBJECT/TASKM/COBOL85/LIBRARY.

FORTRAN Library and User Program

18-74

The following FORTRAN program, compiled as MATHINTRINSICS, creates a library:

$ SHARING = PRIVATE
BLOCK GLOBALS

END

FILE 6(KIND=PRINTER)
EXPORT SINE="SIN",COSINE

REAL FUNCTION SINE(X)
C* PERFORM SINE CALCULATION •••

SINE=SIN(X)
END
REAL FUNCTION COSINE(X)

C* PERFORM COSINE CALCULATION •••
COSINE=COS(X)

END
C* MAIN PROGRAM

END

WRITE(6,/)SINE(X),COSINE(X)
CALL FREEZE(TEMPORARY)

The following FORTRAN program invokes the FORTRAN library MATHINTRINSICS:

BLOCK GLOBALS
FILE 5(KIND=REMOTE)
FILE 6(KIND=PRINTER)
LIBRARY LIBl(TITLE="MATHINTRINSICS",

* INTNAME="MATHINTRINSICS")
END
REAL FUNCTION SIN{X}

REAL X
IN LIBRARY LIBI

END
REAL FUNCTION COS (X)

REAL X
IN LIBRARY LIBI (ACTUALNAME="COSINE")

END
C* MAIN PROGRAM

END

READ (5 ,/) X ~
WRITE(6,/)SIN(X) ,COS (X)

8600 0494-000

Using Libraries

FORTRAN77 Library and User Program

The following examples present the FORTRAN77 versions of the library program and
user program previously described under "FORTRAN Library and User Program" in
this section.

The following FORTRAN77 program, compiled as MATHINTRINSICS, creates a library:

BLOCK GLOBALS
FILE 6 (KIND="PRINTER")

EXPORT (SINE="SIN",COSINE)
END
REAL FUNCTION SINE(X)

C* PERFORM SINE CALCULATION
SINE=SIN(X)

END
REAL FUNCTION COSINE(X)

C* PERFORM COSINE CALCULATION
COSINE=COS(X)

END
C* MAIN PROGRAM

END

WRITE(6,*)SINE(X),COSINE(X)
CALL FREEZE("TEMPORARY")

The following FORTRAN77 program invokes the FORTRAN77 library
MATHINTRINSICS previously described:

BLOCK GLOBALS
FILE 5 (KIND="REMOTE")
FILE 6(KIND="PRINTER II)

LIBRARY LIBI (TITLE=IIMATHINTRINSICS" ,
* INTNAME=,iMATHINTRINSICS")

8600 0494-000

END
REAL FUNCTION SIN (X)

REAL X
IN· LIBRARY LIBI

END
REAL FUNCTION COS (X)

REAL X
IN LIBRARY LIB! (ACTUALNAME="COSINE")

END
PROGRAM MAIN_PROGRAM

EXTERNAL SIN, COS
READ(5,*)X
WRITE(6,*)SIN(X),COS(X)

END

18-75

Using Libraries

Pascal Library

18-76

The following is an example of a Pascal library.

library lib; usage(sharing = sharedbyall);
interface

type vect = array [1 •• 30] of integer;
procedure sum (vector1, vector2 : vect);
function fact (n : integer) : integer;
function sin (r : real) : real;

end;

library mylib (title = 'OBJECT/ARITHLIB ');
procedure sum;

var i : integer;
begin
for i := 1 to 30 do

vector[i] := vectorl[i] + vector2[i];
end;

function sin; mylib;
function fact;

begin
if n < 1 then

fact := 1
else

fact := n * fact(n-l);
end;

begin
freeze;
end.

This library exports the procedure sum and the functions fact and sin, all Qf which
appear in the interface part. Sum and fact are completely declared in the library block.
Sin is imported from another library.

When an ALGOL library procedure uses an EBCDIC array that was passed from a
Pascal user program, the library procedure should specify the starting index of the array.
This precaution is necessary because ALGOL processes the following statements slightly
differently:

REPLACE A BY "HI";
REPLACE A[0] BY "HI";

The following statement causes the value "HI" to be correctly assigned to element 0 of
array A:

REPLA~E A[0] BY "HI";

8600 0494-000

Using Libraries

The following ALGOL library illustrates the use of these types of statements:

$SHARING = PRIVATE
BEGIN

PROCEDURE ALGOLDISPLAY(Sl, S2);
EBCDIC ARRAY Sl [*] ,,' S2 [*]
BEGIN
REPLACE Sl [0] BY II HI" ; % THESE TWO STATEMENTS ARE CORRECT
DISPLAY (Sl [0]);

REPLACE S2 BY "HI"
DISPLAY(S2);

END;

EXPORT ALGOLDISPLAY;
FREEZE(TEMPORARY);

END.

% THESE TWO STATEMENTS ARE ALLOWED,
% BUT WILL NOT GIVE THE EXPECTED RESULTS.

The following example illustrates how an ALGOL user program should pass an
unbounded array to a Pascal library. The ALGOL user program declares the imported
procedure P ASCPROC with an unbounded array parameter A. The ALGOL user
program declares another array, called MYARRAY, for use as the actual parameter.
MYARRAY is declared with a lower bound of 0 because a Pascal library always assumes
the first array element to be at index O.

BEGIN
LIBRARY MYLIB;
PROCEDURE PASCPROC(A);

EBCDIC ARRAY A[*];
LIBRARY MYLIB;

EBCDIC ARRAY MYARRAY [0:5];

REPLACE MYARRAY BY "DATAI!;
PASCPROC(MYARRAY);

END.

8600 0494-000 18-77

Using Libraries

The following Pascal program invokes the procedure ALGOLDISPLAY in an ALGOL
library called OBJECT/ ALGOLLIB~

program p;
type'

stringbyte = packed array [1 •• 20] of char;

library mylib(title= 'OBJECT/ALGOLLIB');
procedure algoldi5play(51, 52 : 5tringtype); mylib;

var
51, 52 : 5tringtype;

begin
sl:= 'abcdefghijklmnopqrst';
s2:= '12345678901234567890';

algoldisplay(sl, s2);
end.

PI../I Library and User Program

18-78

The following is an example of a PL/I library called OBJECT/pL/LIB/CALLEE:

CAllEE: PROC OPTIONS(MAIN, EXPORT(DIST»;
DIST: PROC 8Xl,Yl,X2,Y2) RETURNS (FLOAT);

DCl (XI,Y1,X2,Y2) FLOAT;
RETURN (SQRT (X2-XI)**3 + (Y2-Yl)**3 »;

END;
FREEZE OPTIONS (TEMPORARY);
END CALlEE;

The following PL/I program invokes the PL/I library OBJECT/PL/Lm/CALLEE. This
program uses the library procedure DIST to calculate the distance between two points,
point 1 and point 2. The library procedure DIST uses the intrinsic SQRT function and
the Pythagorean theorem to calculate the distance between point 1 and point 2, which
are defined in terms of their Cartesian coordinates.

CALLER: PROC OPTIONS(MAIN);
DCl lIB lIBRARY (TITLE='OBJECT/PL/lIB/CAlLEE');
DCL DIST ENTRY (FLOAT,FLOAT,FlOAT,FlOAT)OPTIONS(LIBRARY=lIB);
DCl (X1,Yl,X2,Y2,D) FLOAT;

/* (X,Y) COORDINATES OF POINT 1 */
Xl = 1;
YI = 1;

/* (X,Y) COORDINATES OF POINT 2 */
Y2 = 4;
Y2 = 4;

8600 0494-000

Using Libraries

/* CALL DIST FUNCTION IN THE LIBRARY TO RETURN THE DISTANCE FROM
POINT 1 TO POINT 2 */

o = DIST(Xl,Yl,X2,Y2);
PUT LIST(IDISTANCE I);
PUT DATA (D);

END CALLER;

8600 0494-000 18-79

18-80 8600 0494-000

Section 19
Using Shared Files

Files are relevant to interprocess communication (IPC) in two ways:

• Certain kinds of files are intended specifically for use in IPC, and present unique
advantages when compared to other IPC techniques.

• Processes can share the same file, even if the file is not used as a medium for IPC.
For example, two processes might have a shared responsibility for updating a single
file. Even though the file is not used for IPC, the processes must use IPC techniques
to ensure that their updates do not conflict.

This section gives an overview of both of these aspects of files and IPC. For more
detailed information on many of the topics discussed in this section, refer to the A Series
I/O Subsystem Programming Guide.

Sharing Communications Files
IPC files enable processes to communicate with other processes in a maimer similar to
reading or writing a file on a physical device. This makes IPC files an ideal method for
transmitting large quantities of textual information between processes.

The processes that communicate through an IPC file do not have to belong to the same
process family. The processes specify various file attributes that allow the system to
establish a link between the correct pair of processes.

A Series systems support three types of files for use in IPC: port files, host control
(HC) files, and HYPERchannel (HY) files. The following subsections briefly outline the
capabilities of each of these types of IPC files.

Using Port Files

Port files enable communication between processes regardless of whether those
processes reside on a single host or on separate hosts in a local area network or wide
area network. The types of networks that support port files include BNA Version
1, BNA Version 2, A Series Open Systems Interconnection (OSD, and Transmission
Control Protocol/Internet Protocol (TCP lIP).

Port files have been implemented to provide the applications programmer with a single
interface that can be used to communicate across all the types of multihost networks
supported by A Series systems. However, the programmer can choose among any of
several different port services .with slightly varying functionality. Each type of network
supports one or more of these port services. A port service that is available on most
networks is BASICSERVICE. Port file applications that use BASICSERVICE can run
with little or no modification on BNAVersion 1, BNA Version 2, and OSI networks ..

8600 0494-000 19-1

Using Shared Files

Port files can be used by programs written in any of the following languages: ALGOL,
COBOL (68) , COBOL74, COBOL85, FORTRAN, FORTRAN77, Pascal, PL/I, and RPG.
The programs that communicate with each other through a port file do not have to be
written in the same language.

A port file consists of one or more distinct communication paths, called subfiles, that are
grouped under a common name. Individual subfiles are identified by way of the port file
name and a number called the subfile index. You can specify the number of subfiles
associated with a port file by using the MAXSUBFILES file attribute. On systems
running BNA Version 2, you can establish differing priorities for the subfiles through the
use of the DIALOGPRIORITY file attribute.

Before opening a subfile, the application can assign several file attributes that help the
system to identify the matching port file. These file attributes include FILENAME,
which specifies the name of the port file; MYNAME, which must match the YOURNAME
file attribute of the matching port file; and YOURHOST, which specifies the host where
the matching process is running. Other attributes can be used to restrict access to
processes having specified usercode~.

An application can use any of several OPEN statement options to specify whether the
process waits for a matching process to appear or continues execution immediately. If
the process continues execution, it can either abandon the open operation or leave the
subfile in an offered state, ready for the matching process to link to it.

Each subfile consists of an input queue, from which the process reads, and an output
queue, to which the process writes. Messages are processed through each queue on a
first-in, first-out basis, so they always reflect the chronological order in which they were
transmitted. The system provides the event-valued file attributes INPUTEVENT and
OUTPUTEVENT to inform the process of activity in the input and output queues.

The process can write messages to individual subfiles, or can use a broadcast write
statement, which sends the same message to all the subfiles in a port file. Similarly, a
process can read messages from a specific subfile, or use a nonselective read statement,
which reads a message from anyone of the subfiles with waiting input.

For a complete explanation of how to use port files, refer to the A Series I/O Subsystem
Programming Guide.

The following subsections provide simple examples of port file programs written in
COBOL74 and ALGOL.

COBOL74 Port File Example

19-2

The following COBOL 7 4 program declares a port file called MSSR with three subfiles.
This program runs on host SFA15CD and opens the port file with MYNAME =
MASTER and YOURHOST = SF59D. The program opens the port and broadcasts
a message to all subfiles. The program then performs a nonselective operation read
to determine which of the remote processes responded first. It sends a message to
the remote process that responded first and a different message· to the other remote
processes. A "USE AFTER ERROR" procedure causes the program to display a

8600 0494-000

Using Shared Files

message after any I/O error. Note that this program should be initiated after the three
matching processes have been initiated and have attempted to open their subfiles.

8600 0494-000

*COBOL74 READ/WRITE PROGRAM USING BNA OPTIONS.
*THIS PROGRAM RUNS ON HOST SFA15CD.
IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL74-PORTFILE-DEM02.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MSSR ASSIGN TO PORT
ACTUAL KEY IS MSSR-KEY
FILE STATUS IS MSSR-STATUS.

DATA DIVISION.
FILE SECTION.
FD MSSR.
01 MSSR-REC
WORKING-STORAGE SECTION.
01 MSSR-WS.

05 MSSR-STATUS
05 MSSR-KEY

PROCEDURE DIVISION.
DECLARATIVES.
IO-ERROR SECTION.

PIC X (17) •

PIC XX.
PIC 9 COMPUTATIONAL.

USE AFTER ERROR PROCEDURE ON 1-0.
IO-ERROR-HANDLER.

DISPLAY II I/O ERROR ENCOUNTERED II •
DISPLAY IISTATUS IS II, MSSR-STATUS.

END DECLARATIVES.
THE-PROGRAM SECTION.
INITIALIZATION.

CHANGE ATTRIBUTE MAXSUBFILES OF MSSR TO 3.
CHANGE ATTRIBUTE MYNAME OF MSSR TO IIMASTER.II.

*COBOL74 APPLIES THE FOLLOWING ASSIGNMENTS TO ALL SUBFILES.
CHANGE ATTRIBUTE YOURNAME OF MSSR(0) TO IISERVANT.II.
CHANGE ATTRIBUTE YOURHOST OF MSSR(0) TO IISF59D.II.

OPEN-THE-PORT.
MOVE 0 TO MSSR-KEY.
OPEN 1-0 MSSR.

BROADCAST-THE-MESSAGE.
MOVE 0 TO MSSR-KEY.
MOVE IISEND ME A MESSAGE" TO MSSR-REC.
WRITE MSSR-REC.

GET -A-MESSAGE.
MOVE 0 TO MSSR-KEY.
READ MSSR.
DISPLAY "MESSAGE RECEIVED FROM SUBFILE ", MSSR-KEY.
DISPLAY MSSR-REC.

SEND-A-MESSAGE.
* THE ACTUAL KEY AT THIS POINT CONTAINS THE SUBFILE
* FROM WHICH THE MESSAGE WAS 'REMOVED IN THE LAST
* READ STATEMENT.

19-3

Using Shared Files

MOVE "YOU WIN" TO MSSR-REC.
WRITE MSSR-REC.

CLOSE-THE-WINNING-SUBFILE.
CLOSE MSSR.

* READ THE MESSAGES FROM THE LOSING SUBFILES.
PERFORM GET-A-MESSAGE.
PERFORM GET-A-MESSAGE.
BROADCAST-A-MESSAGE-TO-LOSERS.

MOVE "YOU LOSE" TO MSSR-REC.
MOVE 0 TO MSSR-KEY.
WRITE MSSR-REC.

CLOSE-THE-LOSERS.
CLOSE MSSR.
STOP RUN.

ALGOL Port File Example

19-4

The following ALGOL program is designed to communicate with the preceding
COBOL74 program. If three instances of this program are initiated, they will each
communicate with one of the subfiles declared in the COBOL74 program. This ALGOL
program runs on host SF59D and opens a port file called MSSR with a single subfile, and
with MYNAME = MASTER and YOURHOST = SFA15CD. The program reads the
message broadcast from the COBOL74 program, sends a reply, and then reads another
message from the COBOL74 program. The read and write statements are handled by
the procedures READIT and WRITEIT, which use complex wait statements to monitor
the status of the subfiles used.

% COMPLEMENTARY ALGOL PROGRAM FOR READ/WRITE TO A PORT FILE.
% THIS PROGRAM IS TO BE EXECUTED ON HOST IISF59D".
BEGIN
FILE MSSR (KIND = PORT, MAXSUBFILES = 1, MAXRECSIZE = 17,

MYUSE = 10, UNITS = CHARACTERS, MYNAME = IISERVANT.",
YOURNAME="MASTER.", YOURHOST = "SFA15CD.");

EBCDIC ARRAY INMSS[1:17],OUTMSS[1:14];
BOOLEAN RSLT;
INTEGER INT;
PROCEDURE ABORT(REASON);
STRING REASON;
BEGIN

DISPLAY (REASON);
MYSELF.STATUS := VALUE(TERMINATED);

END;
PROCEDURE READ IT;
BEGIN

INTEGER EVNT;
EVNT := WAIT «120),MSSR.CHANGEEVENT,MSSR.INPUTEVENT);
CASE EVNT OF
BEGIN

1: ABORT ("TIME LIMIT ELAPSED - NO MESSAGE RECEIVED II
);

2: CASE MSSR.FILESTATE OF
BEGIN

8600 0494-000

Using Shared Files

VALUE(BLOCKED): VALUE(DEACTIVATIONPENDING):
VALUE(OPENED): VALUE(SHUTTINGDOWN):

IF HAPPENED (MSSR.INPUTEVENT) THEN
RSLT := READ (MSSR,17,INMSS)

ELSE ABORT ("NO MESSAGE RECEIVED");
ELSE: ABORT ("BAD FILESTATP);

END;
3: RSLT := READ (MSSR,17,INMSS);

END;
IF RSLT THEN ABORT ("MESSAGE MISCARRIED")

ELSE DISPLAY (INMSS);
END READ IT;

PROCEDURE WRITEIT;
BEGIN

INTEGER EVNT;
EVNT := WAIT «120),MSSR.CHANGEEVENT,MSSR.OUTPUTEVENT);
CASE EVNT OF
BEGIN

1: ABORT ("TIME LIMIT ELAPSED - NO ROOM TO WRITE");
2: CASE MSSR.FILESTATE OF

BEGIN
VALUE(BLOCKED): VALUE(OFFERED): WRITEIT;
VALUE(OPENED): IF HAPPENED (MSSR.OUTPUTEVENT) THEN

RSLT := WRITE(MSSR,14,OUTMSS);
ELSE: ABORT ("BAD FILESTATE");

END;
3: RSLT := WRITE (MSSR,14,OUTMSS);

END;
IF RSLT THEN ABORT ("WRITE MISCARRIED");

END WRITEIT;

IF (INT := OPEN (MSSR» NEQ 1 THEN
ABORT("UNABLE TO OPEN SUBFILE");

READIT;
REPLACE OUTMSS BY "REMOTE MESSAGE";
WRITEIT;
READIT;
CLOSE (MSSR);
END.

Using Host Control (HC) Files

Host control (HC) files provide a simple, high-speed method for transferring data
between processes running on two different hosts in a local area network.

HC file communication takes place through intersystem control (ISC) hardware. Each
ISC link consists of an ISC hub, which is connected by cables to a host control data link
processor (HCDLP) at each host system.

8600 0494-000 19-5

Using Shared Files

The ISC link must be dedicated to the exclusive use of a pair of application processes,
one on each host. Each process opens a file with a KIND file attribute value of HC and
a FILENAME value equal to the ISC hub name. The processes must communicate
using direct I/O. Therefore, the application must be written in one of the languages that
support HC files and direct I/O. The only languages that support both these features are
ALGOL and NEWP.

Compared to port files, HC files have the potential for offering faster data transfer.
However, unlike port files, HC files can operate only across a single type of dedicated
hardware link, and only in a local area network. Further, HC files lack helpful port
file features such as multiple subfiles, subfile matching based on user-supplied names,
message rerouting, and data compression.

For additional information, refer to the A Series I/O Subsystem Programming Guide.

Using HVPERchannel (HV) Files

HYPERchannel (RY) files are similar to HC files in that HY files allow application
processes to communicate in a local area network over dedicated hardware links. In
the case of HY files, the links are HYPERchannel coaxial trunks that are connected
to an A Series host through an A222 or A223 adapter and a HYPERchannel data
link processor (HYDLP). An application declares an HY file by specifying a KIND file
attribute value of HY. Applications that communicate over the HYPERchannellink must
use direct I/O. Therefore, the applications must be written in one of the languages that
support HY files and direct I/O. The only languages that support both these features are
ALGOL and NEWP.

Compared to port files, HY files offer much the same advantages and liabilities as
HC files. That is, HY files can offer a faster data transfer rate than port files, but
'lack helpful port file features such as multiple subfiles, subfile matching based on
user-supplied names, message rerouting, and data compression.

However, the underlying HYPERchannel hardware gives HY files the following
advantages over HC files:

• HYPERchannel interfaces are supported by many non-A Series systems, including
1100 and 2200 series systems as well as IBM@ and DEC<!> systems. Thus, HY
files enable you to implement applications that communicate across networks of
multivendor systems.

• HYPERchanneilinks can connect systems spread over a distance of several
kilometers. By contrast, the ISC links that support HC files are limited to a few
hundred feet in length. Thus, HY files can provide communication across a larger
distance than HC files can.

For further information about HY files, including examples of programs that use HY
files, refer to the A Series I/O Subsystem Programming Guide.

IBM is a registered trademark of International Business Machines Corporation.
DEC is a registered trademark of Digital Equipment Corporation.

19-6 8600 0494-000

Using Shared Files

Sharing Other Kinds of Files
Port files, HC files, and HY files were designed specifically for use in lPC. A Series
systems also support a number of other file types that are associated with permanent
storage media, such as disk or tape. These file types are not well suited for use in
transmitting information between processes, for two reasons. First, an I/O operation
to a peripheral device takes greater elapsed time than operations on port files, which
take place largely within main memory. Second, these file types do not provide some
of the convenient features of port files, such as separate input and output queues, or
event-valued file attributes that notify processes when records have been received.

However, there are cases where it can useful for two or more processes to share the
same file, even if the file itself is not being used for IPC. These are cases where several
different processes running at the same time are responsible for reading and updating
the same file. The file is being used as a permanent storage medium, rather than a
method of passing control information between processes.

In this situation, you can use IPC techniques to accomplish two of the goals of file
sharing:

• To provide two or more processes with access to the same file

• To regulate timing to prevent these processes from accidentally overwriting each
other's changes to the file

For most file types, the only way to achieve these goals is to design the processes so they
communicate with the file through the same logical file. The logical file is an access
structure, created by a file declaration in the program, that exists in system memory. By
contrast, the physical file is the file that exists on a peripheral storage device, such as
a disk or tape drive. Opening a file causes the logical file to be linked to a physical file
so that the process can read or write information in the file. The following subsections
discuss the concept of the logical file and considerations that arise from sharing logical
files.

For disk files, it is also possible for processes to use the same physical file without using
the same logical file. Considerations for doing this are discussed Wlder "Using Shared
Physical Files" later in this section.

Using Shared Logical Files

Processes cart use any of the following methods to share logical files:

• An internal task can use logical files declared globally in the parent program., as
discussed in Section 15, "Using Global Objects."

• An initiating process can pass a file as a parameter to a process that it initiates, as
discussed in Section 17 , "Using Parameters."

• A WFL job can declare a file and use a global file equation to cause a task to use this
file in place of one declared in the task itself. An example of global file equation,is
given under "File Sharing Examples" later in this section.

8600 0494-000 19-7

Using Shared Files

• A shared library can contain a file declaration that is global to the exported library
procedures. You can design the exported procedures to allow user processes to
access the file declared globally in the library. Refer to "Providing Global Objects" in
Section 18, "Using Libraries."

If all the processes that use the file belong to the same process family, then you can use
any of thes,e sharing methods. If the processes belong to different process families, then
using shared libraries is the only method that' can enable the logical file to be shared.

Specifying the File Location

If the TITLE file attribute of the logical file was not assigned a usercode, then at
file-open time the file is searched for under the usercode of the process that declared the
file. If the file is not found under that usercode, it is searched for as a nonusercoded file.
This search pattern is the same even if the file-open statement is executed by a process
different from the process that declared the file.

Similarly, the family where the system searches for the file is affected by the FAMILY
task attribute of the process that declares the file, rather than by that of the process
that opens the file. If the TITLE file attribute specifies a family, the FAMILY task
attribute can specify a substitute family. If the TITLE file attribute does not include a
family, the FAMILY task attribute can supply a default family.

Synchronizing Access to a File

19-8

The design of the I/O hardware prevents any two I/O operations from accessing the same
record at the same time. For example, there is no way for a record to be read when
a write operation involving the same record is half completed. The read operation is
delayed until the write operation finishes.

However, you can prevent other types of synchronization problems only through careful
program design. Note that these synchronization concerns arise only in cases where at
least one of the processes writes to the shared file. If all the processes simply read from
the file, then the order in which they execute their read operations makes no difference.
The following are the basic goals of synchronization:

• For cases where one process writes to a particular record and a second process is to
read the updated record, the second process should wait until the record is updated
before reading it.

• For cases where two processes read and update the same record, the processes
should be prevented from accidentally overwriting each other's updates. Such
overwriting can occur if both processes read from the record and then both processes
write to the record. The second write operation erases the effects of the first, and
information can therefore be lost. A mechanism must be established to ensure that
the first process completes its update of the record before the second process reads
it.

These types of synchronization can be achieved conveniently through the use of events.
Events can be shared between processes in the same way that logical files are shared:

8600 0494-000

Using Shared Files

they can be accessed as global objects by internal tasks, passed as ca11-by-reference
parameters, or accessed through a SHAREDBYALL library.

If it is only necessary to ensure that different processes do not update the file at the
same time, the available state of an event can be used. Each process can be designed to
procure the event before using the file, and liberate the event afterward.

If it is necessary to ensure that processes access a file in a certain order, the happened
state of an event can be used. The second process that is to use the file can wait on an
event. When the first process is finished using the file, the process can cause the event.

Establishing Access Rights

Some special security considerations arise from the ability of different processes to
share a logical file. The use of a shared logical file can override the file access privileges
of some processes. The use of a shared logical file can make a physical file available to
processes that would otherwise not have been able to access it. A shared logical file can
also prevent a process from using a physical file that it would normally have had access
to. You can control the effects of the shared logical file through careful program design.

Before reading the following discussion, you should be familiar with the concepts
introduced in Section 5, "Establishing Process Identity and Privileges."

The access rights allowed for a logical file are determined at file-open time. Once the
logical file is opened, all the processes that share the logical file have equal access
rights to the physical file. This is true even if the processes have different usercodes,
accesscodes, names, and security statuses.

When a process attempts to open a file, the system examines the physical file to
determine the access rights that can be granted to the logical file. The system evaluates
these rights according to one of the following two rules:

• Actor rule

File access rights are based on the security status and task attributes of the process
that opens the file.

• Declarer rille

File access rights are based on the security status and task attributes of the process
that declares the file.

The actor rule was formerly the only method ·used for file security checking. The
declarer rule was introduced to provide an alternative that gives more predictable
behavior. By default, the declarer rule is now used to determine file access rights.

You can override the default method of file access by assigning the FILEACCESSRULE
task attribute of the process that opens the file. The default value of DECLARER causes
file access rights to be based on the declarer rule. A value of ACTOR causes file access
rights to be based strictly on the actor rule. The value of ACTOR can be assigned only
by a privileged process.

8600 0494-000 19-9

Using Shared Files

The following subsections give examples of how the actor and declarer rules apply to file
access through libraries and file access restricted by guard files.

Example: Nonprivileged Library Program

19-10

Suppose there is a SHAREDBYALL library program. The library object code file is
nonprivileged and has a SECURITYTYPE of PUBLIC. An instance of the library is
running under a privileged usercode called UI. This library declares a file with usercode
U2. The library also exports procedures that can be used to open, close, read from, and
write to the file. It happens that a physical file with the specified title already exists
and has a SECURITYTYPE of PRIVATE. There are also a number of user processes,
including one called A that has usercode U3 and runs with nonprivileged status, and
another user process B that has usercode U 4 and runs with privileged status.

Under the actor rule, if the library process attempts to open the file before freezing,
then the file open operation is successful and all user processes are able to access the.
file by way of the exported procedures. The file open operation succeeds because the
library runs under a privileged usercode and therefore has the right to access a private
file stored under a different usercode.

On the other hand, if the library process freezes before it opens the file, and user process
A enters a library procedure that opens the file, then the file open operation fails. This
is because user process A is nonprivileged and, therefore, does not have the right to
access private files stored under different usercodes. However, if user process B enters
the library procedure that opens the file, the file open succeeds. Once the file is open,
all library user processes, including user process A, are able to access the file by way of
library procedures.

Under the declarer rule, the file open will be successful regardless of whether the library
process opens the file directly or exports a procedure to a user process that opens the
file. In either case, file access is evaluated based on the declaring process, which is the
library. The library, because it is privileged, has the ability to access a file stored under a
different usercode.

8600 0494-000

Using Shared Files

Example: Privileged Transparent Library Program

The concept of privileged transparent status was introduced under "Transparent Object
Code File Privileges" in Section 5, "Establishing Process Identity and Privileges." For
library procedures that open files, the effects of privileged transparent status vary,
depending on whether the file to be open is globally declared, locally declared, or passed
as a parameter. The following ALGOL library, named FILELIB, illustrates these three
possibilities.

100 $ SHARING = SHAREDBYALL
110 BEGIN
120 FILE GLOBALFILE;
130
140 PROCEDURE GLOBAL_OPEN;
150 OPEN(GLOBALFILE);
160
170 PROCEDURE LOCAL_OPEN;
180 BEGIN
190 FILE LOCALFILE;
200 OPEN(LOCALFILE);
210 END;
220
230 PROCEDURE USER_OPEN(PASSEDFILE);
240 FILE PASSEDFILE;
250 BEGIN
260 OPEN(PASSEDFILE);
270 END;
280
290 EXPORT GLOBAL_OPEN, LOCAL_OPEN, USER_OPEN;
300 FREEZE(PERMANENT);
310 END.

FILELIB is a permanent, SHAREDBYALL library. The object code file is marked with
privileged transparent status. FILE LIB exports three procedures: GLOBAL_OPEN,
which opens a file declared globally in the library; LOCAL_OPEN, which declares and
opens a file; and USER_OPEN, which opens a file passed in as a parameter from the
user process.

8600 0494-000 19-11

Using Shared Files

19-12

FILELIB is used by the following user program, called USERPROC.

100 BEGIN
110 FILE USERFILE;
120 LIBRARY L(LIBACCESS=BYTITLE, TITLE="OBJECT /TEST /ALGOL/LIB. ")-;
130
140 PROCEDURE GLOBAL_OPEN;
150 LIBRARY L;
160
170 PROCEDURE LOCAL_OPEN;
180 LIBRARY L;
190
200 PROCEDURE USER OPEN(PASSEDFILE);
210 FILE PASSEDFILE;
220 LIBRARY L;
230
240 GLOBAL_OPEN;
250 LOCAL_OPEN;
260 USER_OPEN(USERFILE);
270 END.

USERPROC invokes all of the library procedures: GLOBAL OPEN, LOCAL OPEN,
and USER_OPEN. . - - .

Suppose that USERPROC runs with a FILEACCESSRULE value of ACTOR. If
USERPROC is privileged, then it succeeds in opening all three files: LOCALFILE,
GLOBALFILE, and P ASSEDFILE. IfUSERPROC is nonprivileged, then the procedures
might or might not succeed in opening the files. The success of each file open operation
depends on the TITLE and SECURITYTYPE attributes of the file.

Suppose instead that the user process USERPROC has a FILEACCESSRULE value of
DECLARER. In this case, USERPROC has different file access rights with regard to
P ASSEDFILE than it does with regard to GLOBALFILE and LOCALFILE. The rules
are as follows:

• Because P ASSEDFILE is ultimately declared by USERPROC, the security status
of USERPROC determines whether it has the right to open P ASSEDFILE. If
USERPROC runs under a privileged usercode, the file open is executed with
privileged status. Similarly, if the object code file for USERPROC is privileged, the
library procedures inherit this status because they are privileged transparent.

• Because GLOBALFILE and LOCALFILE are declared in the library program, the
rights to open these files are determined solely by the security status of the library
process. Even if the object code file of USERPROC is privileged, the privileges
inherited by GLOBAL_OPEN and LOCAL_OPEN do not extend to files declared in
the library program. This behavior is a special exception to the rule that privileged
transparent procedures inherit the privileged status of the code that invokes them.

There is a good reason for this strict treatment of files declared in privileged transparent
libraries. The file access rights for a file declared in a library are permanently
established at file-open time. Thus, a privileged user process opening a file in a shared
library can have the effect of granting file access to other, nonprivileged user processes.

8600 0494-000

Using Shared Files

The behavior under the default declarer rule prevents this file access from being granted
accidentally.

You can overcome this restriction by assigning a FILEACCESSRULE value of ACTOR to
the privileged user process that opens the file.

Example: Parent and Task Accessing a Guarded File

Suppose that a process with a NAME task attribute value of (SMITH)PROC1 declares
a file titled (SMITH)FILEA ON DISK. The process (SMITH)PROC1 initiates a second
process with a NAME of (SMITH)PROC2 and passes the file as a call-by-reference
parameter. Both of these processes are nonprivileged. Suppose, further, that
(SMITH)FILEA ON DISK has a SECURITYTYPE of CONTROLLED and a guard file
that allows only processes named (SMITH)PROC1 to access this file.

Under the actor rule, if (SMITH)PROC1 opens the file, then both (SMITH)PROC1 and
(SMITH)PROC2 are granted access to the file. However, if (SMITH)PROC2 attempts to
open the file before (SMITH)PROC1 opens it, the file open operation fails. The process
(SMITH)PROC2 cannot use the file until it has been opened by (SMITH)PROCl.

Under the declarer rule, both processes are granted access to the file, regardless of
which one opens the file first. This is because (SMITH)PROC1, which declares the file,
is allowed access rights by the guard file.

Understanding I/O Accounting

The system maintains several records of the I/O time accumulated by a process. More
specifically, these are records of the time I/O devices devoted to executing I/Os for the
process. This information is maintained in the ACCUMIOTlME task attribute. This
information also appears in the Major Type 1, Minor Type 2 (EOJ) and Minor Type 4
(EOT) log entries.

8600 0494-000 19-13

Using Shared Files

19-14

If you are involved in writing billing systems or in evaluating the system workload,
then you should be aware that the system logs all I/O time for shared logical files to the
process that declared the file. The process that declared the file is not necessarily the
process that is actually executing read and write statements that use the file. Consider
the following ALGOL example:

BEGIN
FILE DATAFILE(KIND=DISK,NEWFILE=FALSE,DEPENDENTSPECS=TRUE);
TASK T;
PROCEDURE UPDATE;
BEGIN

ARRAY LINE[0:79];
WHILE NOT READ(DATAFILE,80,LINE) DO
BEGIN

REPLACE LINE BY "NEW DATAl!;
WRITE(DATAFILE,80,LINE);

END;
END;
CALL UPDATE [T];
END.

In this example, the parent process initiates the procedure UPDATE as a synchronous
task. UPDATE then reads each line of the file, modifies the data, and writes it back
out to the file. Because the parent process was the declarer of DAT AFILE, the
ACCUMIOTIME attribute of the parent reflects all the I/O initiation time logged by the
UPDATE task.

Note that the system handles I/O accounting in a different manner for direct files.
Suppose that one process declares a direct file, and that several other processes read
from or write to that file using direct arrays. In this situation, the I/O time for each I/O
operation is charged to the process that declares the direct array used for the I/O, rather
than to the process that declares the direct file.

8600 0494-000

Using Shared Files

File Sharing Examples

The following is a simple example of a library that allows multiple user processes to
access the same disk file. This particular library allows processes to access a file as if it
were a stack. In other words, whenever a user process writes to the file, the line pointer
is incremented by one. Whenever a user process reads from the file, the line pointer is
decremented by one. The PROCURE and LIBERATE statements are used to ensure
that only one process accesses the file at a time.

$SHARING = SHAREDBYALL
BEGIN

FILE STK(KIND=DISK,MAXRECSIZE=12,BLOCKSIZE=1200);
EVENT STACK_ACCESS;
INTEGER TOP_OF_STACK;

BOOLEAN PROCEDURE PUSH_STK(BUF);
ARRAY BUF[0];
BEGIN

PROCURE(STACK_ACCESS);
TOP OF STACK := * + 1;
PUSH_STK := WRITE(STK[TOP_OF_STACK], 12, BUF);,
LIBERATE(STACK_ACCESS);

END PUSH_STK;

BOOLEAN PROCEDURE POP_STK(BUF);
ARRAY BUF[0];
BEGIN ,

PROCURE(STAC~ACCESS);
POP_STK := READ (STK[TOP_OF_STACK] , 12, BUF);
TOP OF STACK := * ~ 1;
LIBERATE(STACK_ACCESS);

END POP_STK;

EXPORT PUSH_STK, POP_STK;
OPEN (STK);
TOP_OF_STACK := -1;
FREEZE(PERMANENT);

END.

8600 0494-000 19-15

Using Shared Files

19-16

The following is an example of a WFL job that uses a global file equation to cause two
tasks to use the same logical file. The logical file is declared in the job at lines 140-150.
The global file equations occur at lines 190 and 210.

100 ?BEGIN JOB TEST/WFL;
110 JOBSUMMARY = SUPPRESSED;
120 DISPLAYONLYTOMCS = TRUE;
130 CLASS = 0;
140 FILE GBAL(KIND=REMOTE,NEWFILE=TRUE,TITLE="JUNK/ERRORLOG",
150 MAXRECSIZE=15,UNITS=WORDS);
160 MYSELF(STATION = MYSELF(SOURCESTATION»;
1700PEN(GBAL);
180 PROCESS RUN OBJECT/TEST/ALGOL/TASK;
190 FILE BALANCES := GBAL;
200 PROCESS RUN OBJECT/TEST/ALGOL/TASK;
210 FILE BALANCES := GBAL;
220 LOCK(ERR);
230 ?END JOB

Note that, in the preceding WFL job, it is the colon before the equal sign on lines 190 and
210 that informs WFL that this is a global file equation. If the statement were FILE
BALANCES = GBAL, then WFL would interpret this as meaning that the file title is
GBAL.

The statement at line 160 ensures that the STATION task attribute of the job reflects
the LSN or physical unit number of the originating station. This STATION value is
inherited by the tasks, and determines the station where the GBAL remote file is
opened.

The following is the program that is initiated twice by this WFL job.

100 BEGIN
110 FILE BALANCES;
120 PROCEDURE ERRWRITE(ERR_ARRAY,DEPOSIT,SEQ);
130 EBCDIC ARRAY ERR_ARRAY[*];
140 INTEGER DEPOSIT,SEQ;
150 BEGIN
160 INTEGER CUST_BALANCE;
170 MYJOB.LOCKED:= TRUE;
180 READ(BALANCES[SEQ],//,ERR_ARRAY);
.190 CUST_BALANCE:= INTEGER(ERR_ARRAY,8) + DEPOSIT;
200 REPLACE ERR ARRAY BY CUST BALANCE FOR 8 DIGITS;
210 WRITE(BALANCES[SEQ],//,ERR_ARRAY);
220 MYJOB.LOCKED:= FALSE;
230 END;
240 % The outer block statements are omitted from this example
250 END.

Because events cannot be declared in WFL, this program is designed to make use of the
LOCKED task attribute to regulate access to the file. Settipg LOCKED to TRUE has

8600 0494-000

Using Shared Files

the same effect as procuring an event, and setting LOCKED to FALSE has the same
effect as liberating an event. The program uses the MYJOB task variable because this
task variable has visibility to all the tasks of the WFL job. This mechanism ensures that
only one process is actively reading and writing the file at a time, though all processes
continue to have the file open.

Using Shared Physical Files

It is possible for multiple processes to use the same physical disk file at the same time
without sharing the same logical file. The sharing is accomplished by using identifying
file attributes to cause the logical files in each process to link to the same physical file
when opened.

The fact that the logical file is not shared creates some additional synchronization
problems beyond those previously discussed. These synchronization concerns arise only
in cases where at least one of the processes writes to the shared physical file. If all the
processes simply read from the file, then the order in which they execute their read
operations makes no difference.

However, if one or more of the processes writes to the shared physical file, then the
processes can be adequately synchronized only if they take turns opening and closing the
file. No two processes should have the file open at the same time.

Entering a File in the Directory

Multiple logical files can link to the same physical file only if the physical file has been
entered into the disk directory. The concept of the disk directory is closely related to
the concepts of permanent and temporary files. A permanent file appears in the disk
directory, and by default is retained when it is closed. A temporary file does not appear
in the disk directory, and by default is removed when it is closed.

A process can cause a file to be entered in the directory by any of the following methods,
which are referred to as directory entrance operations:

• Opening the file with the NEWFILE file attribute set to TRUE and the
PROTECTION file attribute set to SAVE or PROTECTED. Of these two values,
SAVE is preferable in most cases because PROTECTED adds overhead. Opening
the file creates a permanent file, which is entered immediately in the directory. The
file continues to exist after the process terminates, unless the process specifies the
PURGE option in the statement that closes the file.

• For a file that was opened with a PROTECTION value of TEMPORARY (the
default), closing the file with either the LOCK or CRUNCH option specified in the
close statement. In addition to closing the file, this action enters the file in the
directory.

• Opening the file with the NEWFILE file attribute and the SENSITIVEDATA file
attribute both set to TRUE. The main purpose of using the SENSITIVEDATA
attribute is to protect sensitive information, but it also has the side effect of entering
a file in the directory.

8600 0494-000 19-17

Using Shared Files

• Opening the file with the NEWFILE file attribute and the DUPLICATED file
attribute both set to TRUE. The main purpose of the DUPLICATED file attribute is
to prevent data from being corrupted by disk errors, but this attribute also has 'the
side effect of entering a file in the directory.

If two files with the same title exist on the same family, they cannot both be permanent.
An option called AUTORM specifies the action to be taken if a process attempts to enter
a file in the directory, and a file with same title already exists. If the AUTORM option is
set, the attempt to enter the file in the directory causes one of the following actions:

• If the old file is not in use by any process, it is removed and the new file is entered in
the directory.

• If the old file is still in use by another process, the old file is removed from the
directory and the new file is added to the directory. The old file remains open as a
temporary file. Some unexpected effects can arise from this situation. For example,
suppose the new file was opened as a temporary file by process B and the old file
was originally opened as a permanent file by process A. When process B closes the
new file with LOCK, the new file is changed into a permanent file, and the old file is
changed into a temporary file. If process A then closes the old file with LOCK, the
old file becomes permanent again and the new file is changed back into a temporary
file.

In general, the last file entered or reentered in the directory is the one that is
saved permanently, regardless of whether the directory entry was caused by the
file attribute values in force at file open time, or by the option used for the close
operation.

If the AUTORM option is reset, and a permanent file with a particular title already
exists, then a process that attempts to enter a file with the same title into the directory
is suspended with a "DUP LmRARY" RSVP message. An operator can restart the
process by entering the RM (Remove) system command, which deletes the existing
duplicate file.

The system treats the AUTORM option as set for a particular process if either or both of
the following are true:

• The AUTORM option of the OPTION task attribute is set.

• The AUTORM operating system option is set. This option can be set or reset .
through the OP (Options) system command.

Matching Physical Files

19-18

Once a physical file is entered in the directory,processes can link other logical files to it
by specifying appropriate values for the following file attributes:

• KIND
Specifies the type of storage medium, such as DISK.

• TITLE

Specifies the usercode, file name, and family.

8600 0494-000

Using Shared Files

• NEWFILE

If set to FALSE, specifies that an existing file should be opened. Note that the
process will be suspended with a "NO FILE" message if the file does not exist. A
NEWFILE value of TRUE can be used for entering a new file in the directory, as
described under "Entering a File in the Directory" earlier in this section. .

• DEPENDENTSPECS

Causes the logical file to assume all the file attributes of the physical file. This
makes it unnecessary for all processes to repeat the file attribute assignments that
determine the structure of the file.

Ensuring Exclusive Access to a Physical File

Two processes are unable to share the same logical file if they are unrelated processes
that do not use a SHAREDBYALL library. In this case, the processes are also unable to
share events. When events are not available, the next best method of synchronization is
to use certain features of the I/O subsystem to ensure that only one process has the file
open at a time.

The simplest method of ensuring exclusive access to a physical file is to create the file
with the default PROTECTION value, which is TEMPORARY. The file is not entered
in the directory.and therefore is not visible to other processes. Later, the process can
close the file with LOCK, thus entering the file in the directory and making it available
to other processes. If another process attempts to access the file before it is locked, the
process is suspended with a "NO FILE" condition. When the file is locked, the process
resumes.

Another method of securing exclusive access to a file is by setting the EXCLUSIVE file
attribute to TRUE before opening the file. The EXCLUSIVE file attribute specifies that
no other process can have the physical file open at the same time as this process.

If a process sets EXCLUSIVE to TRUE and then opens a file, then any other process
that attempts to open that physical file is suspended until this process closes it. If a
process sets EXCLUSIVE and attempts to open a physical file that is already in use
by another process, the process is suspended until the other process closes the file. In
either case, the RSVP message displayed is "WAITING ON: <file title>".

It is possible for multiple processes to be waiting to open the same physical file with
EXCLUSIVE = TRUE. When the file becomes available, one 'of the waiting processes
opens the file and the other processes continue to wait. It is not possible to predict
which of the waiting processes will succeed in opening the file first.

If it is not desirable for the program to be suspended until the file becomes available,
the process can attempt a conditional open operation instead. This can be effected
by using an open statement with the AVAILABLE option set or by interrogating
the AVAILABLE file attribute. If another process is currently using the file with
EXCLUSIVE = TRUE, the conditional open operation fails and returns a result
reporting the reason for the failure. (The results are documented in the AVAILABLE
file attribute description in the A Series File Attributes Programming Reference
Manual.) The process then continues executing normally.

86000494-000 19-19

Using Shared Files

Exclusive files are best suited to situations where a single body of information is to be
transmitted from one process to another. An extended dialogue between processes
cannot be implemented efficiently by this method, because it requires repeated file open
and close operations. Each file open or close operation is an expensive operation that
consumes many times the resources required to access an event or perform a simple read
or write operation.

Sharing Nonexclusive Files

19-20

If the EXCLUSIVE file attribute is not set, then any number of logical files can be
linked to the same physical disk file at the same time. However, you should be aware
that this type of disk file sharing involves complexities of synchronization that are
extremely difficult to resolve. When different logical files are used, different buffers
are also used, with the result that it is not possible to predict the order in which read
and write operations submitted by different processes will be executed. What is more,
the BLOCKSIZE file attribute can cause multiple records to be read into or written
from a buffer, so that changes by other processes to nearby records can be accidentally
overwritten. (For more information about file blocking and file buffers, refer to the
A Series I/O Subsystem Programming Guide.)

Because of these and other problems, this method of sharing disk files between
processes is not recommended. Where unrelated processes need to use the same disk
file concurrently, a shared library should be used to provide access to a shared logical
file. For an example of this method, refer to the discussion of providing global objects in
Section 18, "Using Libraries."

8600 0494-000

Section 20
Communication across Multihost
Networks

The previous sections of this guide introduced several interprocess communication (IPC)
features, including task attributes, events, global objects, parameters, libraries, and port
files. You can use all these techniques to provide communication between processes that
run on the same host system. However, some restrictions apply to the use of these IPC
methods across multihost networks. This section explains which IPC methods can be
used to route information between processes running on separate hosts. Before reading
this section, you should be familiar with the concepts introduced in Section 12, "Tasking
across Multihost Networks."

Port files provide an ideal method of transferring information between processes that
run on different hosts. Subfile matching follows the same rules used for local port files.
The YOURHOST file attribute is used to specify the host where the remote process is
rwming. For a general overview of port files, and examples of port files, refer to Section
19, "Using Shared Files."

Of the task attributes used for interprocess communication, the TASKV ALUE attribute
and the SW1 through SW8 attributes are available for use across multihost networks. A
parent process and a remote offspring can communicate with each other by reading and
assigning these task attributes. However, the LOCKED, TARGET, and TASKSTRING
task attributes are not supported across multihost networks.

The following methods of interprocess communication cannot be used across multihost
networks:

• Global objects

Because a remote process must be an external process, it cannot directly access any
global objects declared in its parent.

• Call-by-reference and call-by-name parameters

The only type of parameter allowed, a one-dimensional real array, must be passed by
value.

• Libraries

The user processes for a library must reside on the same host system as the library.

User-declared events cannot be shared between processes running on different hosts
because global objects, call-by-reference parameters, and libraries are the only ways of
. sharing user-declared events between processes.

However, it is possible to use implicitly declared events. Processes that communicate by
way of port files can wait on the event-valued port file attributes CHANGEEVENT,

8600 0494-000 20-1

Communication across Multihost Networks

20-2

INPUTEVENT, and OUTPUTEVENT. If necessary, you can create port files for the sole
purpose of regulating the timing of related processes.

For example, suppose two processes communicate using aport subfile. The first process
is waiting on the INPUTEVENT. The second process can cause the INPUTEVENT and
thus reactivate the first process by writing a message into the subfile. When the waiting
process is reactivated, it can reset the INPUTEVENT by reading all available messages
in the input queue.

WFL jobs can use forms of the WAIT statement that create implicit events. For
example, the following statements initiate an asynchronous task and cause the job to
wait until the task's TASKV ALUE attribute reaches a certain value:

PROCESS RUN OBJECT/ALGOL/TASK [T];
HOSTNAME = TOLEDO;

WAIT T(TASKVALUE) = 3;

The EXCEPTIONEVENT task attribute has some use in remote interprocess
communication because the exception event of a local parent is implicitly caused when
its remote task terminates. However, a remote task cannot use a CAUSE statement to
cause its parent's exception event because the EXCEPTIONEVENT task attribute
is not supported by Host Services. The other task attributes that access events,
ACCEPTEVENT and LOCKED, are also not supported by Host Services.

8600 0494-000

Glossary

A
abnormal termination

access

The type of termination that results when a process encounters a run-time error, or is
discontinued by an operator command or a statement in another process.

To perform an action on an object. Possible actions depend on the type of object; for
example, interrogating or assigning a value to a variable, reading from or writing to a file,
or invoking a procedure.

accidental entry
See thunk.

activation record

active

A structure that is added to the process stack when a process enters a block. The
activation record includes storage for objects declared in that block, a historical link, and
an environmental link, as well as other items used by the operating system.

Pertaining to the state of a process that is executing normally, and is neither scheduled
nor suspended.

actual parameter
An object or value that is specified in a procedure invocation statement and passed to a
formal parameter.

actual segment descriptor (ASD)
A pointer to the location of a data or code item in memory or on a disk.

addressing environment

ADM

ALGOL

ancestor

The set of objects that can be accessed by statements in a particular block.

See automatic display mode.

Algorithmic language. A structured, high-level programming language that provides
the basis for the stack architecture of the Unisys A Series systems. ALGOL was the
first block-structured language developed in the 1960s and served as a basis for such
languages as Pascal and Ada. It is still used extensively on A Series systems, primarily
for systems programming.

The parent of a particular task, or the parent of any ancestor of the task.

8600 0494-000 Glossary-l

Glossary

APLB

ASCII

ASD

A Programming Language B. A second-generation extended version of A Programming
Language (APL).

American Standard Code for Information Interchange. A standard 7-bit or 8-bit
information code used to represent alphanumeric characters, control characters, and
graphic characters on a computer system.

See actual segment descriptor.

ASDmemory
The memory architecture used on A Series systems. In this memory architecture,
memory is treated as a single continuous region that is indexed by the ASD table.
Memory management is very flexible and is handled automatically by the operating
system.

asynchronous process
A process that executes in parallel with its initiator.

automatic display mode (ADM)

B
BASIC

A display mode that can be initiated at an operator display terminal (DDT) through the
use of the ADM (Automatic Display Mode) system command. In this mode, various types
of information about the system are displayed at regular intervals.

Beginner's All-purpose Symbolic Instruction Code. A programming language that was
. developed as a tool for teaching computer programming. BASIC is similar to FORTRAN
in many ways, but BASIC is easier to use because the instructions are structured more
like English.

BDMSALGOL
A Unisys language based on Extended ALGOL that contains extensions for accessing
Data Management System II (DMSII) databases.

beginning of job (BOJ)
The start of processing of a job.

beginning of task (BOT)

Binder

Glossary-2

The start of processing of a task.

A program that enables separately compiled subprograms to be joined with a host object
code file to produce a single object code file.

8600 0494-000

block

BNA

BOJ

BOT

c

Glossary

. A program, or a part of a program, that is treated by the processor as a discrete unit.
Examples are a procedure in ALGOL, a procedure or function in Pascal, a subroutine or
function in FORTRAN, or a complete COBOL program ..

The network architecture used on ~ Series, B 1000, and V Series systems as well as
CP9500 and CP 2000 communications processors to connect multiple, independent,
compatible computer systems into a network for distributed processing and resource
sharing.

See beginning of job.

See beginning of task.

call-by-name
Pertaining to one method of passing a parameter to a procedure. The system substitutes
the actual parameter wherever the formal parameter is mentioned in the procedure
body. Any assignments to the actual parameter immediately change the value of the
formal parameter, and vice versa. Synonym for by name.

call-by-reference
Pertaining to one method of passing a parameter to a procedure. The system evaluates
the location of the actual parameter and replaces the formal parameter with a reference
to that location. Any change made to the formal parameter affects the actual parameter,
and vice versa. Synonym for by reference.

call-by-value

CANDE

COBOL

Pertaining to one method of passing a parameter to a procedure. A copy of the value of
the actual parameter is assigned to the formal parameter, which is thereafter handled
as a variable that is local to the procedure body. Any change made to the value of a
call-by-value formal parameter has no effect outside the procedure body. Synonym for by
value.

See Command and Edit.

Common Business-Oriented Language. A widely used, procedure-oriented language
intended for use in solving problems in business data processing. The main
characteristics of COBOL are the easy readability of programs and a considerable degree
of machin~ independence. COBOL is the most widely used procedure-oriented language.

code segment dictionary
A memory structure that is associated with a process and that indexes the memory
addresses of the various segments of program code used by that process. The same code
segment dictionary can be shared by more than one process, provided that each process

8600 0494-000 G I ossa ry-3

Glossary

is an instance of the same procedure. A code segment dictionary is also referred to as a
Dl stack.

Command and Edit (CANDE)
A time-sharing message control system (MCS) that enables a user to create and edit
files, and to develop, test, and execute programs, interactively.

Communications Management System (COMS)

compiler

COMS

constant

control

A general message control system (MCS) that controls online environments on A Series
systems. CaMS can support the processing of multiprogram transactions, single-station
remote files, and multistation remote files.

A computer program that translates instructions written in a source language, such as
COBOL or ALGOL, into machine~executable object code.

See Communications Management System.

An object whose value is assigned during program compilation and cannot be changed
during program execution.

(1) The path that execution takes among the various statements of a program. The
general tendency is for control to progress, one statement at a time, from the start to
the end of the program. However, some statements cause the flow of control to take an
alternate path, skipping multiple lines forward or backward before r~suming execution.
(2) The path that execution takes among the processes in a process family.

coroutine

cousin

One of a group of processes that exist simultaneously, but take turns executing, so that
only one of the processes is executing at any given time. The coroutine that is currently
executing is called the active coroutine, and the others are called continuable coroutines.

A process that has an ancestor in common with some other process, but does not have
the same parent as the other process.

critical block
For a dependent process, the block of the highest lexica1level that includes the
declaration of any critical objects used by the dependent process. The process that is
executing the critical block is called the parent of the dependent process. If the parent
exits the critical block while the dependent process is in use, the parent is discontinued
and the dependent process is also discontinued.

critical object

Glossary-4

A type of object that is used by a process, but was originally declared by another process.
Critical objects include the task variable for the process, the procedure declaration for
the process, and any objects passed as actual parameters to the process by name or by
reference.

8600 0494-000

Glossary

D
Data Communications ALGOL (DCALGOL)

A Unisys language based on ALGOL that contains extensions for writing message
control system (MCS) programs and other specialized system programs.

data link processor (DLP)
A processor that serves as the system interface to a specific peripheral device, controller,
or communications network.

Data Management ALGOL (DMALGOL)
A Unisys language based on ALGOL that contains extensions for writing Data
Management System II (DMSII) software and other specialized system programs.

Data Management System II (DMSII)
A specialized system software package used to describe a database and maintain the
relationships among the data elements in the database.

data specification
A section of a Work Flow Language (WFL) source program containing data that can be
read by tasks of the WFLjob. A data specification is also referred to as a data deck .

. DCALGOL
See Data Communications ALGOL .

. declaration
A programming language construct used to identify an object, such as a type or variable,
to the compiler. A declaration can be used to associate a data type with the object so that
the object can be used in a program.

declared external procedure
A dummy procedure declaration used in ALGOL or COBOL74 to enable a program to
initiate a separate program.

dependent process
A process that depends on the continued existence of another process called the parent
process. See also task.

descendant
An offspring of a particular process, or an offspring .of a descendant of that process.

dialogue
See window dialogue.

direct addressing environment

directory

The set of objects that can be accessed by statements in a particular procedure, but that
are not passed as parameters to that procedure.

(1) A table of contents listing the files contained on a device. The device is usually a disk
or a tape. (2) A list of file names organized into a hierarchy according to similarities
in their names. File names are grouped in a directory if their first name constants

8600 0494-000 Glossary-5

Glossary

(and associated usercodes) are identical. These groups are divided into subdirectories
consisting of those file names whose first two name constants are identical, and so on.

discontinue
To cause a process to terminate abnormally. A process can be discontinued by operator
commands, by statements in related processes, or by the system software.

discriminant
In Pascal, an item that appears in an array declaration and that specifies the highest or
lowest numbered index for it particular dimension. If the discriminant is an integer, it
is called a constant discriminant. If the discriminant is a variable, it is called a dynamic
discriminant.

disk resource control (DRC) system

DLP

An optional feature of the disk subsystem that provides the ability to control disk
space on a per user basis. The DRC system does not support interchange (IC) packs
or installation-allocated disk (lAD) usage. DRC is not a security system, but normal
security checking occurs.

See data link processor.

DMALGOL

,DMSII

DRC

Dl stack

E
EBCDIC

element

See Data Management ALGOL.

See Data Management System II.

See disk resource control (DRC) system.

See code segment dictionary.

Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256
graphic and control characters that are the native character set of most mainframe
systems.

A component of an array.

end of job (EOJ)
The termination of processing of a job.

end of task (EOT)
The termination of processing of a task.

Glossary-6 8600 0494-000

entry

EOJ

EOT

Glossary

A type of procedure invocation that creates a new activation record in an existing process
stack. The activation record exists until the procedure is exited.

See end of job.

See end of task, end of transmission.

EPILOG procedure
A procedure that is automatically executed just before control exits the block in which
the EPILOG procedure is declared. The EPILOG procedure is executed even if the
block exit is caused by an error or a DS (Discontinue) system command.

exception task
A process that has a special relationship with another process, such that the following
are true: the exception task's EXCEPTIONEVENT task attribute is caused whenever
the status of the related process changes; and the related process can use the
EXCEPTIONTASK task attribute to access the task attributes of the exception task.

execution

exit

The act of processing statements in a program.

To end the processing of an entered block. Exiting the block eliminates the activation
record.

export object
The declaration of a library object in a library.

expression
A combination of operands and operators that results in the generation of one or more
values.

extended addressing environment
The set of objects that can be accessed by statements in a particular procedure, including
any objects that were passed as parameters to that procedure.

external·procedure
A procedure whose procedure body is contained in an object code file different from the
statement that invokes the procedure. External·procedures are of three kinds: declared
external procedures, passed external procedures, and library procedures.

external process
A process created by initiating an external procedure.

8600 0494-000 Glossary-7

Glossary

F
family

fatal

(1) One or more disks logically grouped and treated as a single entity by the system.
Each family has a name, and all disks in the family must have been entered into the
family with the RC (Reconfigure Disk) system command. (2) . See also process family.

Referring to something capable of causing a process to be discontinued. An error that
causes a process to be discontinued is called a fatal error.

FETCH specification
A statement in a Work Flow Language (WFL) job that provides a message an operator
can display with a PF (print Fetch) system command. Resetting the NOFETCH system
option delays initiation of jobs with FETCH specifications until the operator enters an
OK command for each job.

file attribute
An element that. describes a characteristic of a file and provides information the system
needs to handle the file. Examples of file attributes are the file title, record size, number
of areas, and date of creation. For disk files, permanent file attribute values are stored in
the disk file header.

formal parameter
An object that is declared in a procedure heading and that receives its value from an
actual parameter when the procedure is invoked.

formal parameter specification
A portion of a procedure heading that names and describes a formal parameter.

FORTRAN
Formula Translation. A high-level, structured programming language intended primarily
for scientific use.

FORTRAN77

function

G

A version of the FORTRAN language that is compatible with the ANSI X3.9-1978
standard.

(1) A subroutine that returns a value. (2) See also typed procedure.

global file assignment
A construct that can be included in a Work Flow Language (WFL) job to cause an
offspring to use a file declared in the WFL job. This mechanism amounts to a hidden
by-reference parameter, because the same logical file is used by the job and its offspring.

global object

Glossary-8

An object that is declared outside a particular block, but that can be accessed by
statements in that block.

8600 0494-000

Glossary

guard file

H
halt!1oad

HYDLP

A disk file created by the GUARD FILE utility program that describes the access rights
of various users and programs to a program, data file, or database.

A system-initialization procedure that temporarily halts the system and loads the master
control program (MCP) from a disk to main memory.

See HYPERchannel data link processor.

HYPERchannel data link processor (HYDLP)

I
I/O

A specialized data link processor (DLP) that enables communication between
systems through HYPERchannel adapters. HYPERchannel is a message-level I/O
channel-to-channel communications interface between A Series systems. It can also
provide an interface to other systems for which a HYPERchannel adapter exists.

Input/output. An operation in which the system reads data from or writes data to a file
on a peripheral device such as a disk drive.

I/O processor (lOP)
A specialized processor for moving data between system memory and the I/O subsystem.

import object
The declaration ofa library object in a user program.

in-use process
A process that has been submitted for initiation and has not yet terminated. The state of
an in-use process can be scheduled, active, or suspended.

independent process
A process that does not depend on the continued existence of a parent process. An
independent process is the head of any process family it is part of. See also job.

independent runner (IR)

index

A master control program (MCP) procedure that is initiated as an independent process.
The procedure is executed in its own process stack rather than in the stack of a user
process. An IR can be either visible or invisible. If the IR is visible, its status can be
interrogated. If the IR is invisible, it does not appear in mix displays.

A value used to specify a particular element of an array variable.

8600 0494-000 Glossary-9

Glossary

indexed sequential-access method (lSAM)
A method that provides efficient, flexible random access to records identified by keys
stored in an index.

InfoGuard
The Unisys security-enhancement software for A Series systems. InfoGuard provides
such features as password management, selective logging and auditing, tape volume
security, and simplified system-security configuration.

inheritance
" The automatic transfer of particular task attribute values from a process to a descendant

process. More broadly, inheritance also refers to the automatic transfer of values
from job" queue attributes or session attributes to the equivalent task attributes of a
descendant process.

initiation

initiator

instance

A type of procedure invocation that causes the creation of a new process, with its own
process stack and process information block (PIB). Additionally, a new code segment
dictionary is created if a code segment dictionary for that procedure is not already
available.

The process that initiates a particular process. The initiator can be a different process
from the parent process.

A process that is an execution of a particular procedure and that has its own process
stack. Multiple instances of a procedure can exist at the same time; a new instance is
created each time the procedure is initiated.

interactive process
A process that reads input from a terminal or operator display terminal (ODT), and
whose actions are largely determined by the input received. A data entry process, such
as the Editor, is an example of an interactive process.

internal procedure
A procedure whose procedure body is contained in the same object code file as the
statement that invokes the procedure.

internal process
The execution of an internal procedure that has been initiated.

intersystem control (lSC)
A direct hardware connection that enables data transfer between independent systems.
The components that make up an ISC connection are a hub and its attached host control
(HC) units. The HC unit type used to connect an 1/0 channel to a hub depends on the
type of machine, specifically the I/O subsystem protocol.

invocation
The act that transfers control to the start of a specified procedure, initializes any
parameters, and begins the execution of the statements of the procedure. Invocations
are of two kinds: entrances and initiations.

Glossary-I 0 8600 0494-000

lOP

ISAM

Ise

J

job

Glossary

See I/O processor.

See indexed sequential-access method.

See intersystem control.

An independent process. The job of a particular task is the independent process that is
the eldest ancestor of that task.

job description file

job file

job log

A system disk file that stores information about Work Flow Language (WFL) jobs,
job queues, and various system settings. The job description file is also known as the
JOBDESC file.

A disk file that is associated with a job and contains the job log. The job file for a Work
Flow Language (WFL) job also serves as the object code file for the job, and includes job
restart information, data specifications, and a copy of the WFL source program.

A log that is stored in a job file and contains log entries for a particular job and its
descendant tasks. When the job terminates, the job log is processed to produce the job
sununary.

job queue
A structure in the system software that stores a list of jobs that have been compiled and
are waiting to be initiated.

job summary

L
lex level

A file, produced after a job completes execution, that lists information such as the tasks
initiated by the job, the beginning and ending times for each task, and the termination
information for each task.

See lexical level.

lexical level (lex level)
A measure of the number of other blocks a block is nested within. The outer block of
a program has a lex level of 2 or 3, depending on whether the program haS a procedure
heading. Each block bas a lex level one higher than the block it is nested within.

8600 0494-000 Glossary-ll

Glossary

library
A program that exports objects for use by user programs.

library directory
A memory structure associated with a library process stack that describes the objects
exported by the library process.

library object
An object that is shared by a library and one or more user programs.

library process
An instance of the execution of a library. The sharing option of a library determines
whether multiple user programs use the same instance of the library.

library program source
The program source file from which a library is compiled.

library template
A memory structure, associated with a user process stack, that describes objects
imported from a library.

local host
The host computer system to which a user's station is physically attached.

local object
An object that is declared within a particular block.

local process

logical

(1) A process running on the local host system. (2) A process that communicates with a
remote process by way of a port subfile.

Synonym for virtual.

logical file
A file variable declared in a program, which represents the file and its structure to the
program. A logical file has no properties of its own until it is described by file attributes
or associated with a physical file.

logical station number (LSN)

LSN

(1) In the Network Definition Language IT (NDLTI), a unique number assigned to each
station in a network. Each station has an LSN assigned according to the order in which
the stations are defined in NDLIT. The first defined station is 1. (2) In the Interactive
Datacomm Configurator (IDC), a unique number assigned to each station structure.
When IDC creates the DATACOMINFO file from the network information file IT
(NIFIT), it assigns an LSN to each structure sequentially, beginning with the number 2.
The numbers allocated by IDC are the same as those used by the operating system to
identify a station.

See logical station number.

G/ossary-12 8600 0494-000

Glossary

M
MAKEUSER

MARC

A utility used to define, modify, or display information about the usercodes that
are available on the system. The usercode information is stored in a file called the
USERDATAFILE.

See Menu-Assisted Resource Control.

master control program (MCP)

MCP

MCS

The central program of the A Series operating system. The term applies to any master
control program that U nisys may release for A Series systems.

See master control program."

See message control system.

Menu-Assisted Resource Control (MARC)
A menu-driven interface to A Series systems that also enables direct entry of commands.

message control system (MCS)
A program that controls the flow of messages between terminals, application programs,
and the operating system. MCS functions can include message routing, access control,
audit and recovery, system management, and message formatting.

microsecond

mix

One-millionth ofa second (.000001).

The set of processes that currently exist on a particular computer. The mix can include
active, scheduled, and suspended processes.

mix number
A 4-digit number that identifies a process while it is executing. This number is stored in
the MIXNUMBER task attribute.

multiprocessing
A state in which two or more processors in the same system run under the control of a
single operating system.

multiprogramming
The ability of a single computer system to execute many processes concurrently.

MYJOB
A predeclared task variable that a process can use to access the task attributes of its job.

MYSELF
A predeclared task variable that a process can use to access its own task attributes.

8600 0494-000 Glossary-13

Glossary

N
nesting

NEWP

The practice of declaring a procedure within another procedure.

A structured, high-level programming language used in developing some Unisys system
software. Based on the ALGOL language, NEWP contains facilities necessary for the
operating system to interact with A Series hardware.

normal termination

o
object

The termination of a process that has executed successfully, without any errors and
without being terminated prematurely by an operator command or another process.

Any item declared in a program. Arrays, files, procedures, tasks, and variables are all
examples of objects.

object code file

ODT

offspring

A file produced by a compiler when a program is compiled successfully. The file contains
instructions in machine-executable object code.

See operator display terminal.

The dependent process whose critical block is owned by a particular parent process.

operator display terminal (ODT)
A terminal or other device that is connected to the system in such a way that it can
communicate directly with the operating system. The ODT allows operations personnel
to accomplish system operations functions through either of two operating modes:
system command mode or data comm mode.

outer block

overlay

p

The portion of a program that has the lowest lexical level.

To load code or data into a memory area that was previously allocated to other code or
data, and to write any data that previously occupied the area to a disk file if necessary.

parameter
An identifier associated in a' special way with a procedure. A parameter is declared in the
procedure heading and is automatically assigned a value when the procedure is invoked.

Glossary-14 8600 0494-000

Glossary

parameter passing

parent

The act of passing an object or a value from an actual parameter to a formal parameter.

A process that owns the critical block of a dependent process. If the parent exits
the critical block before the dependent process terminates, the dependent process is
discontinued.

partner process

Pascal

The process that is specified by the PARTNER task attribute of another process. A
process can transfer control to its partner process by executing a general continue
statement.

A high-level programming language developed by Niklaus Wirth, based on the block
structuring nature of ALGOL 60 and the data structuring innovations of C.A.R. Hoare.
Pascal is a general-purpose language.

passed external procedure
A procedure that is passed as a parameter from one program to another. Passed
external procedures include both procedures that are explicitly passed and thunks that
are implicitly passed.

passing mode
The mode by which an actual parameter is passed to a formal parameter. These modes
are call-by-name, call-by-reference, or call-by-value.

performance
(1) A measurement of how efficiently a process uses resources such as processor time,
I/O time, or elapsed time. (2) A measure of the amount of work a computer system is
able to do in a given period of time.

physical file

pm

PL/I

port file

A file as it is stored on a particular recording medium such as a disk or a tape.

See process information block.

Programming Language I. A high-level, structured programming language designed
primarily for scientific and commercial use.

The following should replace all three definitions: A type of file for which file operations
occur between a local user process and another process on the same host or on a remote
host that is reachable through a network. A port file is made up of one or more subfiles,
each of which supports one dialogue.

private process
A process whose task attributes cannot be accessed by other processes. Assigning the
private process option to the OPTION task attribute causes a process to become a
private process.

8600 0494-000 Glossary-15

Glossary

privilege
The ability t.o inv.oke acti.ons that are n.ot .ordinarily all.owed, such as accessing private
files st.ored under .other userc.odes .or inV.oking privileged functi.ons such as SETSTATUS.
The c.oncept .of privilege applies t.o userc.odes, pr.ograms, and pr.ocesses.

procedure
A bl.ock that can be inv.oked by statements elsewhere in the same pr.ogram .or, in
s.ome cases, by statements in an.other pr.ogram. In m.ost instances, a pr.ocedure has
a pr.ocedure heading and a pr.ocedure b.ody. Examples are a pr.ocedure in ALGOL, a
pr.ocedure .or functi.on in Pascal, a subr.outine .or functi.on in FORTRAN, .or a c.omplete
COBOL pr.ogram.

procedure body
The P.orti.on .of a pr.ocedure that c.ontains declarati.ons and statements.

procedure entry
See entry.

procedure heading
The P.orti.on .of a pr.ocedure that specifies the pr.ocedure name and the f.ormal
parameters, if any.

procedure initiation
See initiati.on.

process
The executi.on .of a pr.ogram .or .of a pr.ocedure that was initiated. The process has its .own
pr.ocess stack and pr.ocess inf.ormati.on bl.ock (PIB). It als.o has a c.ode segment dicti.onary,
which can be shared with .other pr.ocesses that are executi.ons .of the same pr.ogram .or
pr.ocedure.

process family
A gr.oUP .of processes c.onsisting .of a single j.ob and any tasks that are descendants .of that
j.ob.

process information block (pm)
A mem.ory structure that is associated with each process stack and c.ode segment
dicti.onary. The pm c.ontains c.ontr.ol inf.ormati.on that is visible .only t.o the .operating
system. The pm f.or a process stack als.o c.ontains a reference t.o a task attribute block
(TAB).

process stack
A mem.ory structure that st.ores inf.ormati.on ab.out the current state .of the executi.on .of a
procedure. The process stack includes activati.on rec.ords f.or all bl.ocks that the process
has entered and n.ot yet exited.

process state
The current status .of a process. The three pr.ocess states are scheduled, active, .or
suspended.

processor
A hardware c.omp.onent that executes pr.ograms and procedures.

Glossary-I 6 8600 0494-000

program

Glossary

(1) A specification of the sequence of computational steps that solve a computational
problem. The steps are written (coded) in a particular programming language. (2) An
object code file.

pseudostation

Q
queue

A station created by the operating system that can be attached to, and controlled by,
a message control system (MCS) like a real station. Unlike a real station, however, a
pseudo station is not declared in the SOURCENDLII file or the DATACOMINFO file, has
no line assigned, and does not need a corresponding physical terminal on the local host.

(1) A data structure used for storing objects; the objects are removed in the same order
they are stored. (2) In Data Communications ALGOL (DCALGOL), a linked list of
messages. (3) See also job queue, ready queue.

queue attribute

R

(1) Any attribute that can be assigned to a job queue using the MQ (Make or Modify
Queue) system command. Queue attributes limit the use of system resources by jobs
and tasks initiated from that queue. MIXLIMIT, PROCESSTIME, and PRIORITY are
examples of queue attributes. (3) In Data Communications ALGOL (DCALGOL), any of
a number of attributes that return information about a DCALGOL queue or affect usage
of that queue.

ready queue (READYQ)
A list, maintained by the operating system, of the processes that are waiting for service
from a processor. '

READYQ
See ready queue.

remote file
A file with the KIND attribute specified as REMOTE. A remote file enables object
programs to communicate interactively with a terminal.

remote host system
A system that can be accessed from the local host system by way of a BNA link.

remote process
A process initiated by a process that was running on another host system.

resuming
The act of changing a library process into a nonlibrary process. For example, a
temporary library process resumes execution as a nonlibrary process when the last user
process delinks from the library. Contrast with thawing.

8600 0494-000 Glossary-17

Glossary

RPG
Report Program Generator. A high-level, commercially oriented programming language
used most frequently to produce reports based on information derived from data files.

RSVP message
A message the system displays for a suspended process that states the reason the
process was suspended. RSVP messages ask for a reply such as OK or DS.

run-time error

s

An error occurring during the execution of a program, which causes the system software
to terminate execution of that program abnormally.

scheduled process

schema

scope

session

sibling

A process whose initiation is delayed, either because the operator has entered an HS
(Hold Schedule) system command or because the operating system estimates the process
is likely to need more memory than is currently available.

In Pascal, an array declaration that includes one or more dynamic array bounds. In other
words, a schema is a type of incomplete array declaration. Using an array schema as a
formal parameter makes it possible to pass arrays with different bounds and different
numbers of elements to the same formal parameter.

Those portions of a program or programs that can contain statements that access a
partictiIar object.

The interactions between a user and a message control system (MCS) during a particular
period of time that is assigned an identifYing session number. Logging on initiates a new
session; logging off terminates a session. Each Menu-Assisted Resource Control (MARC)
or Command and Edit (CANDE) dialogue at a terminal accesses a different session.

A task that has the same parent as another task.

simple array parameter
An array parameter that is declared with an explicitly specified lower bound. Contrast
with unbounded array parameter.

SORT facility
An operating system procedure that sorts a file or a set of records. SORT can be
activated through ALGOL, COBOL(68), COBOL74, PL/I, or the SORT compiler.

source file
A file in which a source program is stored.

Glossary-I 8 8600 0494-000

Glossary

source program

stack

station

A program coded in a language that must be translated into machine language before
execution. The translator program is usually a compiler.

(1) A region of memory used to store data items in a particular order on a last-in,
first-out basis. (2) A nonpreferred synonym for process stack.

The outer end of a communication line. A station can correspond to a single terminal
connected on a single line, or several stations can be connected on a line.

support library
A library that is associated with a function name. User programs can access a support
library by way of its function name instead of its object code file title. The operator uses
the SL (Support Library) system command to link function names with libraries.

suspended process

symbolic

A process that has temporarily stopped executing and cannot continue until appropriate
operator or programmatic action is taken. A process can be suspended deliberately by an
operator command or a statement in a program. In addition, the operating system can
suspend a process automatically, for example, if the process has requested a file that is
missing.

A source program.

synchronous process
A process whose initiator waits after initiating the process. When the process
terminates, the initiator resumes execution.

system command
Any of a set of commands used to communicate with the operating system. System
commands can be entered at an operator display terminal (ODT), in a Menu-Assisted
Resource Control (MARC) session, or by way of the DCKEYIN function in a privileged.
Data Communications ALGOL (DCALGOL) program.

system library
A library that is part of the system software and is accorded special privileges by the
operating system. Two examples of system libraries are GENERALSUPPORT and
PRINTSUPPORT.

system software

T
TAB

The master control program (MCP) and all other object code files necessary for system
operation.

See task attribute block.

8600 0494-010 G\ossary-19

Glossary

TADS

tanking

task

See Test and Debug System.

(1) The practice of temporarily storing output messages in a disk file because the
destination station is unavailable. The operating system and the Communications
Management System (CaMS) both perform tanking. (2) The practice of temporarily
storing messages from a Data Communications ALGOL (DCALGOL) queue in a disk file
until the receiving process is ready to read the messages.

A dependent process.

task attribute
Any of a number of items that describe and control various aspects of process execution
such as the usercode, priority, and the default family specification. Task attributes
can be assigned interactively through task equations, or programmatically through
statements that use task variables.

task attribute block (TAB)

task file

A memory structure that stores the values of task attributes associated with a given
task variable. Before the Mark 3.9 release, this information was part of the process
information block (PIB).

A printer backup file that is associated with each process, and that stores any program
dumps generated by the process while the TOPRINTER program dump option is
enabled. Processes can also write comments to the task file by way of the T ASKFILE
task attribute.

task variable

tasking

An object that is used to interrogate or modify the task attributes of a particular process.

The act of initiating, monitoring, or controlling processes. The processes can be either
jobs or tasks. Operators and users can enter tasking commands from an operator display
terminal (ODT), a Command and Edit (CANDE) session, or a Menu-Assisted Resource
Control (MARC) session. Programs can initiate processes with such statements as
CALL, PROCESS, or RUN. Programs can monitor and control processes by reading and
assigning the values of various task attributes.

tasking program
A program that has been Iilarked with tasking status by the MP (Mark Program). system
command.

tasking status
A type of security status that permits a program to perform most of the actions that
normally require message control system (MCS) privileges. A process receives tasking
status while it is executing code from a tasking program.

Glossa ry-:-2 0 86000494-010

Glossary

termination
The act of permanently ceasing execution of a process. The process stack and process
information block (PIB) are removed. The code segment dictionary can also be removed.

Test and Debug System (TADS)

thawing

A Unisys interactive tool for testing and debugging programs and libraries. TADS
enables the programmer to monitor and control the execution of the software under
testing and examine the data at any given point during program execution.

The act of changing a permanent or control library into a temporary library. Contrast
with resuming.

thrashing

thunk

A state of degraded system performance caused by the overcrowding of main memory.
The overcrowding of memory causes the system to spend an excessive amount of time
performing overlays.

A compiler-generated procedure that calculates and returns the value of a constant or
expression passed to a call-by-name formal parameter. The thunk is executed each time
the formal parameter is used. A thunk is also referred to as an accident:al entry.

transaction processor '(TP)
A process initiated and controlled by the Communications Management System (COMS)
to handle transactions through a particular window.

typed procedure

u

A procedure that is designed to return a value. Invoking such a procedure is similar to
evaluating an expression. See also function.

unbounded array parameter
An array parameter that is declared with an unspecified lower bound. In ALGOL, for
example, such a parameter is declared with an asterisk (*) in place of an explicit lower
bound. Contrast with simple array parameter.

untyped procedure
A procedure that does not return a value. Contrast with typed procedure.

user process
(1) A process that is not an invisible independent runner, a message control system
(MCS), or a system library. (2) A process that is linked to a library process and can
import objects from that library process. Synonym for calling process, client process.

user program
(1) A program that is not part of the system software. (2) A program that uses objects
imported from a library program.

86000494-010 Glossary-21

Glossary

usercode
An identificatiQn cO' de used to' establish user identity and cQntrQlsecurity, and to' prQvide
fQr segregatiQn Qf files. U sercQdes can be applied to' every task, jQb, sessiQn, and file Qn
the system. A valid usercQde is identified by an entry in the USERDATAFILE.

usercode attribute
A characteristic that can be assQciated with a usercQde in the USERDATAFILE. A set
Qf standard usercO'de attributes, such as PU, MAXPw, IDENTITY, and PASSWORD,
are supplied as part Qf the description Qf the USERDATAFILE structure. The system
administratQr Qr security administratQr can define additiQnal usercQde attributes to' meet
the specific needs Qf an installatiQn.

USERDATAFILE

utility

v
variable

virtual

w
WFL

WFLjob

window

A system database that defines valid usercQdes and cQntains variQus data abQut each
user (such as accesscQdes, passwQrds, and chargecQdes) and the PQPulatiO'n Qf users fQr a
particular installatiQn.

A system sQftware prQgram that perfQrms cQmmQnly used functiQns.

An Qbject in a prQgram wh~se value can be changed during prQgram executiQn.

Pertaining to' an item whQse existence is simulated by the system sQftware. FQr example,
a pseudQstatiQn is a virtual statiQn, and a sessiQn is a virtualjQb.

See WQrk FIQW Language.

A WQrk FIQW Language (WFL) prQgram, Qr the executiQn Qf such a prO'gram.

In the CQmmunicatiQns Management System (COMS) architecture, the cQncept
that enabies a number Qf prO'gram envirQnments to' be Qperated independently and
simultaneQuslyat Qne statiQn. One Qf the prQgram envirQnments can be viewed while
the Qthers cQntinue to' Qperate.

window dialogue
In the CommunicatiQns Management System (COMS), a particular access to' a prQgram
envirQnment thrQugh a COMS windQW at a statiQn. The exact number Qf windQW
dialQgues allQwed at Qne time fQr a given windQW depends Qn the CQnstraints established
thrQugh the COMS Utility. NO' mQre thaD eight windQW dialQgues are allQwed at Qne
time fQr any windO'w. Each dialQgue has an identifying number within its windQw.

Glossary-22 86000494-010

Glossary

Work Flow Language (WFL)
A Unisys language used for constructing jobs that compile or run programs on A Series
systems. WFL includes variables, expressions, and flow-of-control statements that offer
the programmer a wide range of capabilities with regard to task control.

86000494-010 Glossary-23

Glossary-24 8600·0494-010

Bibliography

A Series ALGOL Programming Reference Manual, Volume 1: Basic Implementation
(86000098) Unisys Corporation.

A Series APLB Programming Reference Manual (1203643). Unisys Corporation.

A Series BASIC Programming Reference Manual (1203650). U nisys Corporation.

A Series Binder Programming Reference Manual (8600 0304). Unisys Corporation.

A Series C Programming Reference Manual (3957 6061). Unisys Corporation.

A Series CANDE Operations Reference Manual (8600 1500). Unisys Corporation.

A Series COBOLANSI-68 Programming Reference Manual (86000320). Unisys
Corporation.

A Series COBOL ANSI-74 Programming Reference Manual, Volume 1: Basic
Implementation (86000296). Unisys Corporation.

'A Series COBOL ANSI-85 Programming Reference Manual, Volume 1: Basic
Implementation (86001518). Unisys Corporation.

A Series Communications Management System (COMS) Programming Guide
(86000650). Unisys Corporation.

A Series DCALGOL Programming Reference Manual (8600 0841). Unisys
Corporation.

A Series Disk Subsystem Administration and Operations Guide (8600 0668). U nisys
Corporation.

A Series Distributed Systems Seroice (DSS) Operations Guide (8600 0122). Unisys
Corporation.

A Series File Attributes Programming Reference Manual (86000064). Unisys
Corporation.

A Series FORTRAN Programming Reference Manual (1222691). Unisys
Corporation.

A Series FORTRAN77 Programming Reference Manual (39576053). Unisys
Corporation.

A Series I/O Subsystem Programming Guide (86000056). Unisys Corporation.

A Series Menu-Assisted Resource Control (MARC) Operations Guide (86000403).
Unisys Corporation.

86000494-010 Bibliography-l

Bibliography

A Series MultiLingual System (MLS) Administration, Operations, an.d Programming
Guide (86000288). Unisys Corporation.

A Series NEWP Programming Reference Manual (5044233). Unisys Corporation.

A Series Pascal Programming Reference Manual, Volume 1: Basic Implementation
(86000080). Unisys Corporation.

A Series PL/I Reference Manual (1169620). Unisys Corporation.

A Series Print System (PrintS/ReprintS) Administration, Operations, and
Programming Guide (8600 1039). Unisys Corporation.

A Series Report Program Generator (RPG) Programming Reference Manual, Volume 1:
Basic Implementation (86000544). Unisys Corporation.

A Series Security Administration Guide (8600 0973). Unisys Corporation.

A Series Security Features Operations and Programming Guide (8600 0528). Unisys
Corporation.

A Series System Administration Guide (8600 0437). Unisys Corporation.

A Series System Commands Operations Reference Manual (8600 0395). Unisys
Corporation.

A Series System Configuration Guide (86000445). Unisys Corporation.

A Series System Operations Guide (8600 0387). Unisys Corporation.

A Series System Software Support Reference Manual (8600 0478). Unisys
Corporation.

A Series System Software Utilities Operations Reference Manual (8600 0460). Unisys
Corporation.

A Series Systems Functional Overview (86000353). Unisys Corporation.

A Series Task Attributes Programming Reference Manual (8600 0502). Unisys
Corporation.

A Series Work Flow Language (WFLj Programming Reference Manual (8600 1047).
Unisys Corporation.

Bib/iography-2 86000494-010

A Series Work Flow Language (WFL) Programming Reference Manual
(form 8600 1047). U nisys Corporation.

8600 0494-000

Bibliography

Bibliography-3

Bibliography-4 8600 0494-000

Index

A

A (Active Mix Entries) system command, 6-5
and Automatic Display mode, 3-18

A Series Open Systems Interconnection,
(See Open Systems Interconnection
(OSI»

A-DS termination message, 10-2
abnormal termination,_ 1-4

messages describing, 10-2
ABORTED task state value, in WFL, 6-4
ABORTONLY value

JOBSUMMARY task attribute, 10-5
ACCEPT statement, 3-28
ACCEPTEVENT task attribute, 3-28
ACCESSCODE task attribute

and CANDE sessions, 3-4
and file security, 5-8
and remote process, 12-8E

accidental entry, 17-4, (See also thunks)
a~counting

of processor usage, 7-3
and shared logical files, 19-13

ACCOUNTING (Resource Accounting)
system command, 10-4

ACCUMIOTIME task attribute, 9-16
and shared logical files, 19-13 -

ACCUMPROCTlME task attribute, 7-3, 7-5
activation records, 8-6
ACTIVE

STATUS task attribute value, 6-3
effect of assigning to a library process,

6-10
WFL task state value, 6-4

active coroutines, 2-4
actor file security, 19-9
actual parameters, 17-1
ACTUALNAME clause

in import declarations, 18-17
ADD statement, in WFL, 4-9

entering in CANDE, 3-4
privileged status of, 5-12

addressing environment, 15-1

8600 0494-010

direct, 17-2
effects of parameter passing on, 17-1
extended, 17-2

ADM (Automatic Display Mode) system
command, 3-17,6-5

and ODT files, 3-20
sources for submitting, 3-23

ALGOL, 4-13
accessing task attributes in, 4-16
communication through global objects,

15-4
compound statements in, 1-7
example of library and user programs,

18-48
initiating compilations in, 4-15
initiating interactive processes in, 4-15
initiating processes in, 4-14
initiating utilities in, 4-15
interprocess communication in, 4-16
library features

array parameter bounds, 18-38
LINKCLASS, 18-46
LINKLffiRARY function, 18-12
parameter passing modes, 18-40
parameter types, 18-19
typed library procedures, 18-18

port files in, 19-2
example program, 19-4

preventing critical block exits in, 2-10
PROGRAMDUMP statement in, 10-:-12
restarting processes written in, 4-16
simple blocks .in, 1-7
structuring programs written in, 4-14
submitting WFL jobs in, 4-15
support of HC files, 19-6
support of HY files, 19-6
tasking parameters, 17-7

alias, (See local alias usercodes)
ALIVE stack state, 6-6

Index-1

Index

ALLOW statement, in COBOL74, 16-16
and general enables, 16-17

ancestors, 2-17
ANYOTHERCLASSOK usercode attribute,

4-6
APLB,4-27
ARCHIVE command, in WFL

and nonprivileged processes, 5-7
and privileged processes, 5-9

array parameters
in libraries, 18-38
in tasking, 17-32

asynchronous processes, 2-2
and critical block exits, 2-9
using events for synchronization of, 16-1

AT < hostname >
in a WFL job, 12-2
use in CANDE, 12-13
used to prefix system commands, 12-11

attaching an interrupt, 16-15
attributes

file, 9-1
print, 9-10
task, 1-2

automatic display mode, 3-17
and ODT files, 3-20

AUTORECOVERY operating system option,
11-3

AUTORESTORE task attribute, 9-6
AUTORM operating system option, 19-18

used to prevent process suspension, 6-14
AUTOSWITCHTOMARC task attribute,

3-15
AVAILABLE file attribute, 6-12
available memory, 8-1
available state, of an event, 16-1

accessing, 16-2
determining ownership, 16-6
testing, 16-5

AX. (Accept) system command, 3-28
sources for submitting, 3-24

B

BACKUP option, of OPTION task attribute,
9-8

Backup Processor, initiating from CANDE,
3-3

BACKUP utility
initiating from ODT, 3-17
initiating from WFL, 4-9

Index-2

BACKUPBYJOBNR operating system option,
9-9

BACKUPF AMILY task attribute, 9-11
and MARC sessions, 3-13

BACKUPKIND file attribute, 9-7
BACKUPPROCESS command, in CANDE,

3-3
bad GO TO, (See GO TO statement)
BADINITIATE process status, 6-3
BASIC, 4-27
BASICSERVICE, 19-1
BDBASE option, 2-20 .

effect on MYJOB task variable, 2-21
effect on printing, 9-12

BDMSALGOL, 4-14
BDNAME task attribute, 9-11
BEGIN ... END groups, in ALGOL, 1-7
Binder

and COBOL74 program structure, 4-19
and STACKHISTORY task attribute

value, 10-10
bound-in procedures considered internal,

1-6
initiating from CANDE, 3-3
providing tasking capabilities with, 4-27

block structure, 1-6
blocks, 1-7
BNA Version 1, support of port files, 19-1
BNA Version 2, support of port files, 19-1
BOJ message, 2-18
BOT message, 2-18
BR (Breakout) system command, 11-15,

11-17
sources for submitting, 3-25

broadcast write statement, 19-2
buzz loop, 16-18

c
c

library features
array parameter bounds, 18-38
library program example, 18-59
parameters, 18-21
user program example, 18-61

tasking capabilities of, 4-27
tasking parameters, 17-7

C (Completed Mix Entries) system command,
6-5

and Automatic Display mode, 3-18
and CANDE sessions, 3-6

86000494-010

and MARC sessions, 3-12
sources for submitting, 3-23
termination types displayed, 10-1

CALL statement
in ALGOL, 4-15
in COBOL74, 4-20

call-by-name parameters, 17-3
call-by-reference parameters, 17-4
call-by-value parameters, 17-3
call-by-value-result parameters, 17-5
CALLCHECKPOINr procedure, 11-8

CPTYP parameter, 11-S
UTYP parameter, 11-8

CANCEL statement, 18-41
CANCEL WARNING, SHARED LIBRARY

WAS DELINKED, 18-41
CANDE

and MCSNAME task attribute, 3-7
control commands, 3-2
initiating and controlling processes in, 3-1
initiating compilations in, 3-3
initiating dependent processes in, 3-1
initiating interactive processes in, 3-7
initiating utilities in, 3-3
meaning of EXCEPTIONTASK, 3-6
meaning of MYJOB, 3-7
meaning of MYSELF, 3-7
meaning of PARTNER, 3-7
monitoring and controlling processes in,

3-5
parameter passing from, 3-6
programming considerations for, 3-6
saving commands for later use in, 3-6
schedule session, 3-6
submitting WFL jobs in, 3-3
task attribute access, 3-4

CANDEGETMSG usercode attribute, 3-5
CARDS job queue attribute, 4-6
causes, of abnormal termination

external, 10-17
internal, 10-17

causing an event
and resetting the event, 16-9
directly, 16-8
implicitly, 16-8
partially, 16-9

CD-ROM
retention of backup files on, 9-9

CENTRALSUPPORT task attribute, 9-16
CHANGE statement, in WFL

and WFLjob restarts, 11-4

86000494-010

Index

CHANGE statement, in WFL, privileged
status of, 5-12

CHARGE task attribute
and CANDE sessions, 3-4
and MARC sessions, 3-13
and remote process, 12-SE

CHECKPOINT ABORTED message, 11-12
checkpoint facility, 11-5

CALLCHECKPOINT procedure, 11-8
checkpoint file, 11-10B
checkpoint job file, 11-10B
checkpoint number, II-lOB
checkpoint temporary file, 11-10B
device option, 11-7
displaying status of, 11-16
disposition option, 11-7, 11-8
exception action, 11-8
file recovery and, 11-6
information stored by, 11-6
invoking from a program, 11-5
operator initiation, 11-15
output files, 11-10B
restarting a task checkpointed by, 11-18
restrictions, 11-10C
result value, 11-11

checkpoint function
CPTYP parameter, 11-8
UTYP parameter, 11-8

circular library linkage, 18-15
CLASS

task attribute, 4-6
usercode attribute, 4-6

CLASSLIST usercode attribute, 4-6
COBOL(68), 4-19

block structure, 1-7
initiating program dumps in, 10-12
library features

array parameter bounds, 18-38
examples, 18-65
parameter passing mode, 18-40
parameter types, 18-23

port files in, 19-2
refers to ANSI -68 COBOL, vi
restarting processes written in, 4-23
tasking parameters, 17-7

COBOL74, 4-19
accessing task attributes in, 4-23
block structure, 1-7
entering procedures in, 4-21
initiating compilations in, 4-22
initiating interactive processes in, 4-22
initiating processes in, 4-20

Index-3

Index

initiating program dumps in, 10-12
initiating utilities in, 4-22
interprocess communication in, 4-23
invoking programs written in, 4-23
library features

array parameter bounds, 18-38
examples, 18-66
parameter passing mode, 18-40
parameter types, 18-25
sharing properties of, 18-5

port files, 19-2
example program, 19-2

preventing critical block exits in, 2-11
special parameter handling, 17-9
structuring programs written in, 4-19
submitting WFL jobs in, 4-22
tasking parameters, 17-7

arrays and bound procedures, 17-38
using coroutines in, 4-21

COBOL85, 4-19
block structure, 1-7
initiating program dumps in, 10-12
library features

array'parameter bounds, 18-38
examples, 18-70
parameter types, 18-27

port files in, 19-2
tasking capabilities of, 4-28
tasking parameters, 17-7

code files, (See object code files)
code segment dictionaries, 8-2, 8-3

and object code file privileges, 8-4
communications files, 19-1
Communications Manageinent System

(COMS)
MARC transaction processor, 3-8
output tanking, 9-13

compilations
determining success of

interactively, 10-2
programmatically, 10-7

initiating
from ALGOL, 4-15
from CANDE, 3~3
from COBOL74, 4-22
from MARC, 3-9
from ODT, 3-17
from WFL, 4-9

COMPILE statement
in CANDE, 3-3
in WFL,4-9

entering at ODT, 3-16

Index-4

COMPILE STATUS (Information for
Compiler Task) command, 3-23

COMPILED OK WFL task state value, 6-4
COMPILER option, of MP system command,

5-4C
compiler security status, 5-13
COMPLETED task state value, in WFL, 6-4
COMPLETED OK task state value, in WFL,

6-4
complex expressions

and call-by-name parameters, 17-4
and call-by-reference parameters, 17-5

complex wait, 16-11
compound statements, 1-7
COMS, (See Communications Management

System (COMS))
CONDITIONAL value

JOBSUMMARY task attribute, 10-5
continuable coroutines, 2-3
CONTINUE statement, 2-4

implicit
and PARTNER task attribute, 2-6
and WFL jobs, 2-4

in COBOL74, 4-21
in remote task, 12-5

control, (See flow of control)
control libraries, 18-3
CONTROL option, of MP system command,

5-4C
control points, 1-4
control programs

immunity from scheduling, 7-3
priority status, 7-2

CONTROLCARD function, in DCALGOL,
4-16

and WFL execution modes, 4-2B
CONTROL CARD independent runner, 4-2B
CONVENTION task attribute, 9-16

and CANDE sessions, 3-4
and MARC sessions, 3-13

COPY statement, in WFL
and WFLjob restarts, 11-4
effect on object code file privileges, 5-6,

8-4
entering at ODT, 3-16
entering in CANDE, 3-4
initiates LIBRARY/MAINTENANCE, 4-9
privileged status of, 5-12
SERIALNO option, 6-13

copy_to J>tr _ t procedure, in C, 18-65
CORE task attribute, 8-5
coroutines, 2-3

8600 0494-010

active, 2-4
and critical block exits, 2-9
and remote tasking, 12-5
continuable, 2-3
in ALGOL, 4-15
in COBOL74, 4-21

cousins, 2-17
CP (Control Program) system command,

5-4C
CPTYP parameter

CALLCHECKPOINT procedure, 11-8
critical block, 2-9

in ALGOL, 2-10
in COBOL74, 2-11
in WFL, 2-11

CRITICAL BLOCK EXIT error message, 2-9
critical objects, 2-7

and critical block definition, 2-9
CU (Core Usage) system command, 3-23
CURRENT CIRCULAR LmRARY

REFERENCE STRUCTURE error
mes~e, 18-16

D

D-DS termination message, 10-2
DA (Dump Analyzer) system command, 3-17
data communications, 9-12, (See also remote

files, ODT files)
message tanking, 9-12
suppressing messages, 9-14

data specifications, in WFL, 4-11
and CANDE "WFL" command, 3-4
and MARC "WFL" command, 3-10
and remote task, 12-4
stored injob file, 2-19

DBS (Database Stack Entries) system
command,3-23

DCALGOL, 4-14
CONTROLCARD function, 4-16
DCKEYIN function, 4-17

and privileged status, 5-9
and security administrator status, 5-13
and SYSTEMUSER status, 5-13

DCWRITE function, 5-14, 9-13
EPILOG procedures, 16-20
GETSTATUS function, 4-17

and nonprivileged status, 5-7
and ODT status, 5-12
and privileged status, 5-9
and SYSTEMUSER status, 5-13

8600 0494-010

MCS capabilities, 5-14
SETSTATUS function, 4-17

and privileged status, 5-9

Index

and security administrator status, 5-13
and SYSTEMUSER status, 5-13

USERDATA function, 5-10
DCALGOL queues

and events, 16-13
primary queue, 5-14

DCKEYIN function, in DCALGOL
and privileged status, 5-9
and security administrator status, 5-13
and SYSTEMUSER status, 5-13

DCSTATUS utility, initiating from CANDE,
3-3

DCWRITE function, in DCALGOL
and tasking status, 5-17
assigning a station to a file, 9-13
initializing primary queue, 5-14

declarations
effect on security of shared files, 19-9
import, 18-8
library, 18-9
scope, 15-1

affected by parameter passing, 17-1
declared external procedures, 1-6
declared remote-file programs, in COMS,

9-13
declarer file security, 19-9
defaults, established by job queue rattributes,

4-4
DELINKLmRARY function, 18-41
d~lta character, 3-20
delta character, and ODT files, 3-20
dependent processes, 2-7

and critical block exit, 2-9
as tasks, 2-18
communication with parent, 2-8
flow of control, 2-8

DEPENDENTSPECS file attribute, 19-19
DEPTASKACCOUNTING task attribute,

10-4
descendants, 2-17
DESTNAME task attribute, 9-11

and CANDE sessions, 3-4
and MARC sessions, 3-13

DESTSTATION task attribute, 9-11
detaching an interrupt, 16-15
DIALOGPRIORITY file attribute, 19-2
direct addressing environment, 17-2
direct I/O

required for HC files; 19-6

Index-5

Index

required for HY files, 19-6
direct window programs, in COMS, 9-13
directories, (See library directories)

.. directory, (See disk directory)
disabling an interrupt

general disable, 16-16
specific disable, 16-16

DISALLOW statement, in COBOL74, 16-16
and general disables, 16-17

discriminants, in Pascal arrays, 17-35
disk directory, 19-17

entering a file in, 19-17
disk families, 9-4
disk files, 9-3

automatically restoring missing files, 9-6
disk directory, 19-17
limiting usage, 9-6
specifying family substitution for, 9-4

disk resource control (DRC) system, 9-6
and WFL job restarts

and checkpoint failures, 11-15
effects of forcing job initiation, 11-4

DISKLIMIT job queue attribute, 4-6
DISKLIMIT task attribute

and program dumps, 10-17
inheritance in process family, 2-24

DISPLAY messages
creating, 3-26
suppressil;lg, 9-15

DISPLAYONLYTOMCS task attribute, 3-26,
9-15

DL (Disk Locatio~) system command
specifying backup family, 9-8
specifying job family, 11-3

DMALGOL, 4-14
EXCEPTION procedures, 16-21

DO command, in CANDE, 3-6
DONTCARE library sharing option, 18-5
DQ (Default Queue) system command, 4-7
DRC system, (See disk resource control

(DRC) system)
DS (Discontinue) system command, 6-9

sources for submitting, 3-22, 3-24, 3-25
DS messages, 10-2
DSSSUPPORT library

and TASKINGJMESSAGE/HANDLER,
12-13

and TASKING/STATE/CONTROLLER,
12-13

and unsupported task attributes, 12-15
as MYJOB for remote tasks, 12-5

Index-6

DUMP (Dump Memory) system command,
6-11, 10-13

dump analysis for a running process,
10-16C

DUMP ANANLYZER utility, initiating from
an ODT, 3-17

dumps, (See program dumps)
DUP LIBRARY message, 19-18
DUPLICATED file attribute, 19-18
DURATION compiler option, in C, 18-4
dynamic remote-file programs, in COMS,

9-13

E

E-DS ter~ation message, 10-2
elapsed time

displaying, 7-5
interrogating programmatically, 7-5

ELAPSEDLIMIT job queue attribute, 4-6
ELAPSEDLIMIT task attribute

and program dumps, 10-17
inheritance in process family, 2-24

ELAPSEDTIME task attribute, 7-5
elements, in Pascal arrays, 17-35
enabling an interrupt

general enable, 16-16
specific enable, 16-16

entering procedures, 1-5
EOJ termination message, 10-2
EOT termination message, 10-2
EPILOG procedures, 16-20

and A-DS termination type, 10-2
error messages, indexing, vi
EVENT_STATUS procedure, 16-6
events, 16-1

available state of, 16-1
accessing, 16-2
determining ownership, 16-6
testing, 16-5

causing
and resetting, 16-9
directly, 16-8
implicitly, 16-8
partially, 16-9

declaring, 16-2
efficiency considerations, 16-17
happened state of, 16-1

accessing, 16-7
duration, 16-12
testing, 16-11

8600 049~010

implicitly declared, 16-12
interrupts, 16-13

attaching, 16-15
declaring, 16-14
detaching, 16-15
disabling, 16-16
enabling, 16-16
waiting for, 16-17

liberating, 16-4
partially, 16-4

procuring
conditionally, 16-3
unconditionally, le-:.3

resetting
after causing, 16-9
after waiting on, 16-10
directly, 16-9

starvation of, 16-19
use across networks, 20-1
waiting on, 16-10

and resetting, 16-10
for time period, 16-10

waiting on multiple events, 16-11
EXC I/O TIME, 9-16
EXC PROC TIME error message, 7-3
EXCEPTION procedures, 16-20
exception task, 2-22
EXCEPTIONEVENT task attribute

and critical block exits
in ALGOL, 2-11
in COBOL74, 2-11

using across BNA, 20-2
using in monitoring offspring, 6-7

EXCEPTIONTASK task attribute
and MARC sessions, 3-13
meaning for CANDE session offspring, 3-6
meaning for MARC session offspring, 3-14
meaning for processes initiated from ODT,

3-19
EXCLUSIVE file attribute, 19-19
executing of object code files, 1-1
EXIT PROGRAM statement, in COBOL74,

2-4,4-21
export lists, 18-2
export objects, 18-1
expressions, in parameter passing

complex expression
effect on ca1l-by-name parameter, 17-4
effect on call-by-reference parameter,

17-5
simple expression

effect on ca1l-by-name parameter, 17-4

86000494-010

Index

effect on call-by-reference parameter,
17-5

thunks
created for call-by-name parameter,

17-4
not created for call-by-reference

parameter, 17-4
extended addressing environment, 17-2
external causes, of abnormal terinination,

10-17
external procedures, 1-6

declared external procedures, 1-6
passed external procedures, 1-6

external processes, 1-6

F

and library procedures, 18-42B
capabilities of, 2-1

F-DS termination message, 10-2
FA (File Attributes) system command, 3-24
families, (See disk families, process families)
FAMILY job queue attribute, 4-6
family substitution, 9-4
FAMILY task "attribute

and CANDE sessions, 3-4
and MARC sessions, 3-13
and remote process, 12-8E
and shared logical files, 19-8

F AMIL YNAME file attribute, 9-3, 9-4
faults, recovery from

and the ON statement, in ALGOL, 10-11
and the RESTART task attribute, 11-21

FETCH task attribute, 3-27
file attributes, 9-1
file equations, 9-2

compared with FAMILY task attribute,
9-5

in MARC sessions, 3-13
FILEACCESSRULE task attribute

and security of shared files, 19-9
FILEACCOUNTING task attribute, 10-4
FILE CARDS task attribute

and printing, 9-10
FILEDATA utility

initiating from CANDE, 3-3
initiating from ODT, 3-17

FILEEQUATE screen, in MARC, 3-13
FILENAME file attribute

and printing, 9-11
and subfile matching, 19-2

Index-7

Index

files
guard files, 5-8
in interprocess communication, 19-1
logical, 19-7
per~ent,19-17

physical, 19-7
private, 5-8
public, 5-8
remote, (See remote files)
security restrictions, 5-7
tempor~19-17

FILEUSE file attribute
and tape files, 6-13

FIX statement, in ALGOL, 16-4
flow of control

affected by dependency, 2-8
between related processes, 2-2
in a program, 1-6

FM (Form Message) system command, 3-24
FOREIGN TASK INITIATION FAILED

error message, 12-4, 12-5
formal parameters, 17-1
FORTRAN

block ·structure, 1-7
call-by-reference parameter in, 17-5
DEBUG PROGRAMDUMP statement in,

10-12
library features

array parameter bounds, 18-38
examples, 18-74
parameter passing mode, 18-40

. parameter types, 18-29
typed procedures, 1S-18

port files in, 19-2
tasking capabilities of, 4-28

FORTRAN77
block structure, 1-7
call-by-reference parameter in, 17-5
CONTROL libraries in, 1S-3
DEBUG PROGRAMDUMP statement in,

10-12
library features

array parameter bounds, 18-38
examples, 1S-75
parameter passing mode, 18-40
parameter types, 18-29
typed procedures, 1S-18

port files in, 19-2
tasking capabilities of, 4-28

FR (Final Reel) system command, 6-14
sources for submitting, 3-24

FREE statement, in ALGOL, 16-5

Index-8

free _ t procedure, in C, 1S-60
FREEZE FAILED, TASK TYPE NOT

PROCESS OR RUN message, 1S-13
FREEZE statement, 18-3
FROZEN

stack state, in Y command, 6-6
STATUS task attribute value, 6-3

FS (Force Schedule) system command
and WFLjob restarts, 11-4
sources for submitting, 3-22

FUNCTION < function name> IS NOT
DEFINED message, 18-12

FUNCTION, in FORTRAN or Pascal, 1-7
FUNCTIONNAME library attribute, 18-9

G

GETSTATUS function, in DCALGOL
and nonprivileged status, 5-7
and ODT status, 5-12
and privileged status, 5-9
and SYSTEMUSER status, 5-13

GIVING clause
in COBOL(68), 18-24
in COBOL74, 18-26
in COBOL85, 18-28

global file assignments, in WFL, 4-11
and remote processes, 12-4

global objects
blocks, 1-7
in interprocess communication, 15-1

GO TO statement
and EXCEPTION procedures, 16-21
effect on process stack size, 8-7
using bad GO TO to exit interrupts, 16-14,

16-17
GOINGAWAYvalue of STATUS task

attribute, 6-10
GS character, and ODT files, 3-20
guard files, 5-8

and file declarer security, 19-13

H

haIt/loads, process recovery after, 11-1
happened state, 16-1

accessing, 16-7
duration of, 16-12
testing, 16-11

86000494-010

HC files, 19-5
heap, in C programs, 18-22
heap_to .J)tr _ t procedure, in C, 18-22, 18-60
HI (Cause EXCEPTIONEVENT) system

command, 3-27
sources for submitting, 3-24

history, of processes, 10-1
HISTORYCAUSE task attribute, 10-7

and DS message~, 10-2
HISTORYREASON task attribute, 10-7
HISTORYTYPE task attribute, 10-7

and DS messages, 10-2
HOLDING stack state, 6-6
host control (HC) files, 19-5
HOST NOT REACHABLE error message,

12-5
Host Services, 12-1
host usercodes

and MARC sessions, 12-12
and nonusercoded status, 5-11
and remote processes, 12-7
and system commands, 12-11

HOSTNAME task attribute
use in remote tasking, 12-3

hosts
local, 12-1
remote, 12-1

HU (Host U sercode) system command, (See
host usercodes)

HY files, (See HYPERchannel (HY) files)
HYPERchannel (RY) files, 19-6

1-DS termination message, 10-2
I/O usage, 9-1

accumulated I/O time
displaying, 7-4
interrogating programmatically, 7-5

data communications, 9-12
default usercode· for files, 9-1
disk files, 9-3
limiting, 9-16
localization, 9-15
modifying file attributes, 9-1
printing, 9-7

m (Instruction Block) system command, 3-26
sources for submitting, 3-24

IL (Ignore Label) system command, 6-13
sources for submitting, 3-24

8600 0494-010

Index

ILLEGAL HOST-TO-HOST TRANSFER OF
TASK error message, 12-4

ILLEGAL OWN ARRAY error message, 18-6
ILLEGAL TASK ATTRIBUTE OR

ATTRIBUTE VALUE error message,
12-4

ILLEGAL VISIT error message, 2-4
implicit continue

and PARTNER task attribute, 2-6
and WFL jobs, 2-4

import declarations, 18-8
import objects, 18-1
imported library procedures, (See library

procedures)
in-use process, 6-1
inclusion, 2-1
independent processes, 2-7

and critical block exit, 2-9
as jobs, 2-18
communication with parent, 2-8
flow of control, 2-8

indexes, in Pascal arrays, 17-35
InfoGuard

and backup files, 9-8
security administrator status, 5-13
tape volume security, 5-9
UNITNO file attribute restrictions, 3-20,

6-14
INFOGUARDSUPPORT library object code

file, 5-9
INHERITMCSSTATUS task attribute, 5-17
initial presence-bit operations, 8-3
INITIALIZE statement, in WFL, 6-11
initiating processes

from interactive sources, 3-1
from programming languages, 4-1
object code files, 1-1
procedures, 1-5

INITPBIT, (See initial presence-bit
operations)

in TI command display, 7-4
INITPBITCOUNT task attribute, 7-5
INITPBITTIME task attribute, 7-5
input queues, of port subfiles, 19-2
INPUTEVENT file attribute, 19-2
instances

of a library, 18-4
of an object code file, 1-1

instruction blocks, in WFL, 3-26
internal causes, of abnormal termination,

10-17
internal names

Index-9

Index

of files, 9-2
of libraries, 1S-10C
of priI:lter backup files, 9-9

internal procedures, 1-5
internal processes, 1-5

capabilities of, 2-1
internationalization, (See localization)
interprocess communication, 13-1

between remote processes, 20-1
using events, 16-1
using global objects, 15-1
using HC files, 19-5
using HY files, 19-6
using libraries, 1S-1
using parameters, 17-1
using port files, 19-1
using shared logical files, 19-7
using task attributes, 14-1

interprocess relationships, 2-1
interrupts, 16-13

attaching, 16-15
declaring, 16-14
detaching, 16-15
disabling

general disable, 16-16
specific disable, 16-16

efficiency considerations, 16-18
enabling

general enable, 16-16
specific enable, 16-16

waiting for, 16-17
intersystem control (ISC) hardware, 19-5
INTNAME file attribute, 9-2

and printer backup file titling, 9~9
INTNAME library attribute, 1S-10C
INUSE task state value, in WFL, 6-4
INVALID OPERATOR error message, 17-31
IOTIME job queue attribute, 4-6
lPC, (See interprocess communication)
ISC hardware, (See intersystem control

(ISC) hardware)

J

J (Job and Task Display) system command,
2-18

and STATUS task attribute, 6-5
sources for submitting, 3-23

job, 2-18
job attribute list, in WFL, 4-10
job description file, 11-3

Index-IO

job files, 2-18
of WFL jobs, 2-19

job logs, 10-4
job numbers, 2-19
job queues, 4-3

and remote job transfer, 12-3
changes affecting job restart, 11-3
scheduling job initiation, 4-7

job summaries, 10-4
controlling contents of, 10-4
controlling printing of, 10-5
saving as a disk file, 10-5

JOB/HANDLER/ < local hostname> , in mix
display, 12-2

JOBNUMBER task attribute
and CANDE sessions, 3-4
and MARC sessions, 3-13

JOBRESTART independent runner
andjob restarts after a halt/load, 11-19

JOB SUMMARY task attribute, 10-5
and CANDE sessions, 3-4

assigning, 3-7
and MARC sessions, 3-13

JOBSUMMARYTITLE task attribute
and CANDE sessions, 3-4

assigning, 3-7
and MARC sessions, 3-13

K

KIND file attribute, 19-18

L

LABEL (Label ODT) system command, 3-19
LABEL tape file attribute, 6-14
LANGUAGE task attribute, 9-15

and CANDE sessions, 3-4
and MARC sessions, 3-13

LC (Log Comment) system command, 10-4
LD (Load Control Deck) system command,

3-16,3-22
LEVEL compiler control option

and COBOL(68) or COBOL74 libraries,
18-7

lexical level, 1-7
LFILES command, in CANDE, 3-3
LG (Log for Mix Number) system command,

10-5
LIBACCESS attributes

86000494-010

libraries, 18-10B .
liberating an event, 16-4

partially, 16-4
LIBP ARAMETER library attribute, 18-11

and dynamic linkage, 18-15
modifying the value of, 18-41

libraries, 18-1
ALGOL

ACTUALNAME clause, 18-17
dynarrriclinkage, 18-15
examples, 18-48, 18-51, 18-52, 18-53,

18-54, 18-55, 18-56, 18-69
internal tasks as libraries, 18-5
LINKLIBRARY function, 18-12
OWN clause restrictions, 18-6
parameter types, 18-19
procedure types, 18-18

and checkpoints
not checkpointable, 11-10e
recovering libraries used by

checkpointed tasks, 11-6
attributes

FUNCTIONNAME, 18-9
INTNAME, 18-10C
LmACCESS, 18-10B
LIBPARAMETER, 18-11
TITLE, 18-11

C
automatic freeze, 18-4
examples, 18-59, 18-61
parameter types, 18-21

CANCEL statement, 18-41
COBOL(68)

automatic freeze, 18-4
export objects, 18-3
naming export objects, 18-17
parameter types, 18-23
restrictions, 18-7
sharing properties, 18-5

COBOL74
automatic freeze, 18-4
export objects, 18-3
naming export objects, 18-17
parameter types, 18-25
restrictions, 18-7
sharing properties, 18-5

COBOL85
examples, 18-70

, parameter types, 18-27
control, 18-3
debugging facilities, 18-48 .
declaration, 18-9

86000494-010

DELINKLIBRARY function, 18-41
DONTCARE, 18-5
exporting objects, 18-2

effects on local variables, 18-5
FORTRAN

examples, 18-74
parameter types, 18-29

FORTRAN77
examples, 18-75
parameter types, 18-29

FREEZE statement, 18-3
initiating

explicitly, 18-13
implicitly, 18-13

instances of, 18-4
internal tasks, ability to freeze, 18-5
library programs, 18-2
linkage

circular, 18-15
creating, 18-12
delinking, 18-41
direct, 18-14
dynamic, 18-14
indirect, 18-14
type matching, 18-18

LINKLmRARY function, 18-12
NEWP

LINKLmRARY function, 18-12
NEWP parameter types, 18-30

Index

OWN objects, restrictions on use, 18-6
parameter passing

array lower bounds matching, 18-38
parameter type matching, 18-19
passing mode matching, 18-39

Pascal
examples, 18-76
LINKLmRARY function, 18-12
parameter types, 18-32

permanent, 18-3
PL/I

examples, 18-78
parameter types, 18-37

private, 18-4
procedures, (See library procedures)
security, 18-45
SHAREDBYALL, 18-4
SHAREDBYRUNUNIT,l8-4
SHARING option, 18-4
support libraries, 18-9
system libraries, 18-46
task attributes of, 18-42B
temporary, 18-3

Index-II

Index

thawing, 6-10
user programs, 18-8

, ACTUALNAME clauses, 18-17
import declarations, 18-8
library declarations, 18-9

using across multihost networks, 20-1
LIBRARIES option of the OPTION task

attribute, 18-48
library attributes, 18-9

FUNCTIONNAME, 18-9
INTNAME, 18-10C
LIBACCESS,18-10B ,
LIBPARAMETER, 18-11
TITLE, 18-11

LIBRARY ATTRIBl!TES NOT
CHANGEABLE error message,
18-48

LIBRARY DID NOT FREEZE: < library
name> error message, 18-13

library directories, 18-48
library instances, 18-4
library linkage mechanism, 18-13
library objects, 18-1
library parameters

matching array lower bounds, 18-38
matching parameter types, 18-19
matching passing mode, 18-39

library procedures
as a type of external procedure, 1-6
inclusion properties of, 2-1
matching typed procedures, 18-18

LIBRARY task attribute, 18-43
inheritance to internal processes, 2-1

library templates, 18-48
library user programs, 18-8
LIBRARY WAS NOT INITIATED message,

18-13
LIBRARY/MAINTENANCE independent

rwmer,4-9
LIBRARYSTATE task attribute, 18-43
LIBRARYUSERS task attribute, 18-43
LIBS (Library Task Entries) system

conunand, 6-5, 18-4
sources for submitting, 3-23

limits, (See resource usage)
LINEINFO compiler option, 8-2, 10-8
LINES job queue attribute, 4-6
linkage classes, of libraries, 18-46
LINKCLASS library attribute, 18-46
LINKLIBRARY function, 18-12
LIST compiler option, 10-8
LJ (Log to Job) system command, 10-4

Index-12

local alias usercodes, 12-7
local host, 12-1
local operator, 12-1
local processes, 12-1
local variables

in exported procedures, 18-5
localization, 9-15 .
LOCK checkpoint disposition, 11-7
LOCK statement, in COBOL74

used for conditional procures, 16-4
used for unconditional procures, 16-3

LOCKED task attribute, 14-1
and events, 16-13

LOCKEDFILE file attribute
prevents removal of backup files, 9-9

LOG (Analyze Log) system command, 3-17
LOG command, in CANDE, 3-3
LOG statement, in WFL, 4-9
LOGANALYZER utility

and process history, 10-6
initiating from CANDE, 3-3
initiating from WFL, 4-9
used in estimating the working set, 8-5

LOGGING (Logging Options) system
command, 10-4

logging of process history, 10-4
logical files, 19-7

security rules for sharing, 19-9
sharing, 19-7

LOGSELECT usercode attribute, 10-5
LPBDONLY operating system option, 9-8

M

main memory, 8-1
MAKEUSER utility, 5-2

assigning privilege status to usercode with,
5-10

malloc _ t procedure, in C, 18-60, 18-65
MARC, (See Menu-Assisted Resource

Control (MARC»
MAXCARDS task attribute

and CARDS job queue attribute, 4-6
and program dumps, 10-17
inheritance in process family, 2-24

MAXIOTIME task attribute, 9-16
and IOTIME job queue attribute, 4-6
and program dumps, 10-17
inheritance in process family, 2-24

MAXLINES task attribute
and LINES job queue attribute, 4-6

86000494-010

and program dumps, 10-17
inheritance in process family, 2-24

MAXPROCTIME task attribute, 7-3
and PROCESSTIME job queue attribute,

4-6
and program dumps, 10-17
inheritance in process family, 2-24

MAXSUBFILES file attribute, 19-2
MAXW AIT task attribute, and program

dumps, 10-17
MC (Make Compiler) system command, 5-4C
MCPINIT library attribute, 18-47
MCS status, 5-14

compared to tasking status, 5-17
MCS window programs, in COMS, 9-14
MCSNAME task attribute

and CANDE, 3-7
and MARC sessions, 3-15

members of a process family, 2-17
memory

presence-bit operations, 8-3
stack size limits, 8-6
thrashing, 8-2

memory usage, 8-1
available memory, 8-1
code segment dictionaries, 8-2
main memory, 8-1
overlayable memory, 8-1
PIBs, 8-2
process stacks, 8-2
save memory, 8-2
TABs, 8-2
virtual memory, 8-1

MEMORY_MODEL compiler control record,
in C, 18-22

Menu-Assisted Resource Control (MARC)
and AUTOSWITCHTOMARC task

attribute, 3-15
initiating compilations in, 3-9
initiating dependent processes in, 3-9
initiating interactive processes in, 3-12,

3-15
initiating processes from, 3-8
initiating utilities in, 3-9
meaning of EXCEPTIONTASK, 3-14
meaning ofMYJOB, 3-14
meaning of MYSELF, 3-14
meaning of PARTNER, 3-14
monitoring and controlling other processes

in,3-11
monitoring and controlling your own

processes in, 3-10

86000494-010·

passing parameters from, 3-14
submitting WFL jobs in, 3-9
task attribute access, 3-13

message control system (MCS)
security status of, 5-14

message control system status, 5-14
compared to tasking status, 5-17

messages

Index

abnormal termination messages, 10-2
display in CANDE sessions, 3-5
suppressing, 9-14

MESSAGESEARCHER statement, in
ALGOL and NEwp, 9-15

MISSING OBJECT < object name> IN
LIBRARY message, 18-12

mix,5-1
displaying, 6-5

mix number, 5-1
of CANDE sessions, 3-6
of MARC sessions, 3-12

MIXLIMIT job queue attribute, 4-4
modules, methods of sharing, 1-9
MOVE (Move Job/pack) system command,

3-22
MP (Control Program) system command

effect on priority, 7-2
MP (Mark Program) system command, 5-4C

and code segment dictionary sharing, ~
and compiler status, 5-13
and libraries, 18-45

MQ (Make or Modify Queue) system
command, 4-3

MSG (Display Messages) system command
and Automatic Display mode, 3-18
and DISPLAY messages, 9-15
sources for submitting, 3-23

MSG session option, in CANDE, 3-5
MU (Make User) system command, 5-10
MX (Mix Entries) system command, 6-5

sources for submitting, 3-23
MYJOB task variable, 2-21

in imported library procedures, 18-42B
meaning for CANDE session offspring, 3-7
meaning for MARC session offspring, 3-14
meaning for processes initiated from ODT,

3-19
MYSELF task variable, 2-21

in imported library procedures, 18-42B

Index-13

Index

N

N-DS termination message, 10-3
NAME task attribute

and file security, 5'-8
inheritance to internal processes, 2-1

nesting, 1-7
NEVERUSED value of STATUS task

attribute, 6-3
used to reinitialize a task variable, 6-11

NEWFILE file attribute, i9-19
effect on default usercode, 9-1

NEWP
library features

array parameter bounds, 18-38
LINKCLASS, 18--46
LINKLIBRARY function, 18-12
parameter passing mode, 18-40
parameter types, 18-30

support ofHC files, 19-6
support of HY files, 19-6

NF (No File) system command
sources for submitting, 3-24

NO FETCH STATEMENT error message,
3-27

NO FILE message
and AUTORESTORE task attribute, 9-6
and library linkage, 18-12
and NEWFILE file attribute, 19-19
and ODT files, 3-19
and remote tasks, 12-4
and temporary files, 19-19

NOFETCH option, 3-27
NOJOBSUMMARYIO task attribute, 10-5

and CANDE sessions, 3-4
assigning, 3-7 '

and MARC sessions, 3-13
NON - EXTERNAL RUN error message, 2-1
NON ANCESTRAL TASK REFERENCE

error message, 2-22
NON OWNER WRITE ACCESS OF A

PRIVATE TASK error message, 2-24
noninitial presence-bit operations, 8-3
nonprivileged status, 5-7

of a process, 5-7
nonselective read statement, 19-2
nonusercoded status, 5-10
normal termination, 1-4
NOSUMMARY option

of OPTION task attribute, 10-5
operating system option, 10-5

Index-14

NOTOK (Do Not Reactivate) system
command,3-25

o
0-DS termination message, 10-3
object code files, 1-1

instances of, 1-1
privilege status, 5-4C
privileges assigned to, 5-4C
security administrator statu,s, 5-4C
tasking status, 5-4C

OBJECT TYPE OR PARAMETER
MISMATCH IN LIBRARY message,
18-12

OCCURS clause
and COBOL(68) or COBOL74 libraries,

18-7
ODT, (See operator display terminal (ODT»
ODT files, 3-19
ODT status, 5-12
ODT-DLPs, 3-16
OF (Optional File) system command, 3-25
offspring, 2-9
OK (Reactivate) system command, 6-11

and FETCH messages, 3-27
sources for submitting, 3-25

ON command in CaMS, 9'-14
ON RESTART statement, in WFL, 11-2
ON statement, in ALGOL, 10-11
ON TASKF AULT statement, in WFL, 10-8
ONEONL Y library attribute, 18--47
OP (Options) system command

AUTORECOVERY operating system
option, 11-3

AUTORM operating system option
and disk file sharing, 19'-18

BACKUPBYJOBNR operating system
option, 9'-9

LPBDONLY operating system option, 9-8
NOFETCH operating system option, 3-27
NOSUMMARY operating system option,

10-5
PDTODISK operating system option,

10-15
SERIALNUMBER operating system

option, 6-13
Open Systems Interconnection (OSI), 19-1
operating system options

AUTORECOVERY, 11-3
AUTORM, 19-18

86000494-010

BACKUPBYJOB~R, 9-9
LPBDONLY, 9-8
NOFETCH, 3-27
NOSUMMARY, 10-5
PDTODISK, 10-15
SERIALNUMBER, 6-13

operator display terminal (ODT), 3-16
accessing task attributes at, 3-18
initiating compilations at, 3-17
initiating interactive processes at, 3-19
initiating programs at, 3-17
initiating utilities at, 3-17
monitoring and controlling processes at,

3-17
ODT files, 3-19
submittingWFLjobs at, 3-16

operators
local, 12-1
remote, 12-1

OPTION task attribute
BACKUP option, 9-8
BDBASE option, 2-20

printing effects, 9-12
inheritance to internal processes, 2-1
LIBRARIES option, 18-48
NOSUMMARY option, 10-5
private process option, 2-24

and CANDE, 3-6
and MARC, 3-14

program dump options, 10-12
TODISKoption, 10-14
TOPRINTER option, 10-13

options, system, (See operating system
options)

OT (Inspect Stack Cell) system command
and stack number, 5-2
sources for submitting, 3-23

OTHERPBIT, (See noninitial presence-bit
operations)

OTHERPBIT, in TI command display, 7-5
OTHERPBITCOUNT task attribute, 7-5
OTHERPBITrIME task attribute, 7-5
OU (Output Unit) system command, 6-13

sources for submitting, 3-25
outer block, 1-7
output queues

of port subfiles, 19-2
of remote files, 9-12

OUTPUTEVENT file attribute, 19-2
OUTPUTMESSAGEARRAY feature of

ALGOL and NEwp, 9-15
overlay, 8-1

8600 0494-010

Index

OWN clause, in library procedures, 18-6

p

P-bit operations, (See presence-bit
operations)

P-DS termination message, 10-3
paragraphs, in COBOL74, 1-7
parameters, (See library parameters, tasking

parameters)
actual, 17-1
critical block affected by, 2-10
effect on scope of declarations, 17-1
formal, 17-1
in interprocess communication, 17-1
passing from CANDE sessions, 3-6
passing from MARC sessions, 3-14
passing modes, 17-3

call-by-name, 17-3
call-by-reference, 17-4
call-by-value, 17-3
read-only, 17-6
specifying, 17-6

parent, 2-7
as owner of critical block, 2-9

PARENT PROCESS TERMINATED error
message, 2-9

and process families, 2-17
and RESTART task attribute, 11-22

partner process, 2-6
accessing task attributes of, 2-23

PARTNER task attribute
in coroutine discussion, 2-6
meaning for CANDE session offspring, 3-7
meaning for MARC session offspring, 3-14
meaning for processes initiated from ODT,

3-19
using to access task attributes of the

partner process, 2-23
P ARTNEREXISTS task attribute, of remote

task, 12-5
Pascal

block structure, 1-7
CONST clause, 17-6
library features

array parameter bounds, 18-38
examples, 18-76
LINKLIBRARY function, 18-12
parameter passing mode, 18-40

. parameter types, 18-32
port files in, 19-2

Index-15

Index

tasking capabilities of, 4-28
tasking parameters, 17-7

arrays, 17-34
passed external procedures, 1-6

inclusion properties of, 2-1
passing mode, 17-3

·call-by-name, 17-3
call-by-reference, 17-4
call-by-value, 17-3

PB (Print Backup) system command, 3-17
PB statement, in WFL, 4-9
PDEF command, in CANDE, 3-5
PDTODISK operating system option, 10-15
PERFORM statement, in COBOL74, 1-7

affect on process stack size, 8-7
permanent files, 19-17
permanent libraries, 18-3
PF (Print Fetch) system command, 3-27

sources for submitting, 3-22, 3-24
physical files, 19-7
PIB, (See process information block (PIB»
PL/I

library features
examples, 18-78
matching passing mode, 18-41
parameter types, 18-37

port files in, 19-2
tasking capabilities, 4-28
tasking parameters, 17-7

port files, 19-1
ALGOL example, 19-4
COBOL74 example, 19-2

PP (Privileged Program) system command,
. 5-4C

PQ (Purge Queue) system command, 3-22
PR (Priority) system command, 7-2

sources for submitting, 3-22, 3-24
presence-bit operations, 8-3

displaying counts and times of, 7-4, 7-5
measuring programmatically, 7-5

primary queue, of an MCS, 5-14
primitive system commands, in MARC, 3-11
print attributes, 9-10
print request, 9-9·
PRINT statement, in WFL, 9-10

entering in CANDE, 3-4
Print System, 9-7
PRINTDEFAULTS task attribute, 9-10

and CANDE· sessions, 3-4
and MARC sessions, 3-13

PRINTDISPOSITION file attribute, 9-11
interaction with BDBASE tasks, 2-20

Index-16

printing, 9-7
backup file media, 9-7
backup file titling, 9-8
controlling programmatically, 9-:-10
queueing print requests, 9-9
submitting print requests, 9-9

priority, 7-1
of message control systems, 5-14

PRIORITY job queue attribute, 4-6
PRIORITY task attribute, 7-1

and CANDE sessions, 3-4
and MARC sessions, 3-13
inheritance in process family, 2-24

private files, 5-8
PRIVATE library sharing option, 18-4
private processes, 2-24
privileged status

of a process, 5-9
of an object code file, 5-4C

transparency, 5-5
privileged transparent status, 5-5
procedure entrance, 1-5
procedure initiation, 1-5
procedures

as a type of block, 1-7
effect on critical block definition, 2-10
external, 1-6
in COBOL74, 1-7
internal, 1-5
passed as parameters, 17-2
typed, in ALGOL, 4-14

process
security classes, 5-6

process families, 2-17
access to task variables within, 2-21
ancestor, 2-17
cousin, 2-17
descendants, 2-17
familial relationships, 2-17
inheritance of resource limits, 2-24
jobs and tasks, 2-18
members, 2-17
offspring, 2-9
parent, 2-9
siblings, 2-17
special types of jobs, 2-19

process history, 10-1
process information block (pm), 8-2
process stacks, 8-2

activation records, 8-6
size limits on, 8-6

PROCESS statement

86000494-010

in ALGOL, 4-15
in COBOL74, 4-20
in WFL, 4-8, 4-9

entering at ODT, 3-16
processes

active, 6-3
as executions of object code files, 1-1
asynchronous, 2-2
attributes, (See task attributes)
communication with other processes, 13-1
coroutines, 2-3
dependent, 2-7
external, (See external processes)
history, 10-1

internal versus external causes, 10-17
programmatic access to, 10-6

in-use, 6-1
independent, 2-7
initiating

from interactive sources, 3-1
from programming languages, 4-1

internal, (See internal processes)
local, 12-1
memory components

code segment dictionary, 8-2
PIB,8-2
process stack, 8-2
TAB, 8-2

operator communication with, 3-26
partner, (See partner process)
priority, 7-1
private, 2-24
related, 2-17
relationships, 2-1
remote, (See remote processes)
resource usage

displaying, 7-4
measuring programmatically, 7-5

restarting, 11-1
resuming, 6-11
scheduled, 6-3

preventing scheduling, 6-11
security class, 5-7
states, 6-1
suspended, 6-3

preventing suspension, 6-12
suspending and resuming, 6-11

synchronous, 2-2
terminating, 6-9
unrelated, 2-17
variables, (See task variables)

processor usage accounting, 7-3

86000494-010

and shared logical files, 19-13
displaying, 7-4

Index

measuring programmatically, 7-5
processors, controlling usage of, 7-1
PROCESSTIME job queue attribute, 4-6
procuring an event

conditionally, 16-3
unconditionally, 16-3

program dumps, 10-11
analyzing for a running process, 10-16C
and external causes, 10-17
and internal causes, 10-17
and the task file, 10-16
directing to disk or printer, 10-13
DSED option, 10-17
FAULT option, 10-17
immune to resource limits, 10-17
operator-caused, 10-12
PROGRAMDUMP statement, 10-12

PROGRAMDUMP statement, 10-12
dump analysis for a running process,

10-16C
programs, 1-1
PROTECTION file attribute, 19-17

used to secure exclusive access, 19-19
PU option, of MP system command, 5-4C
public files, 5-8
PURGE checkpoint disposition, 11-7

Q

Q-DS termination message, 10-3
QF (Queue Factors) system command, 4-4
QFACTMATCHING operating system

compile-time option, 4-7
queues, (See input queues, of port subfiles,

job queues, output queues,
DCALGOL queues)

R

R-DS termination message, .10-3
read-only parameters, 17-6
ready queue, 7-1

time, displaying for a process, 7-4
READY stack state, 6-6
READYQ, in TI command display, 7-4
RECEIVED BY CONTENT clause

Index-17

Index

and COBOL(68) or COBOL74llbraries,
18-7

related processes, 2-17
remote files

and CANDE sessions, 3-8
and job restarts, 11-2
and MARC sessions, 3-12, 3-15
and ODTs, .3-19
andWFL,4-9
effects of TANKING task attribute on,

9-12
remote hosts, 12-1
remote operators, 12-1
remote processes, 12-1

interacting with, 12-10
interprocess communication, 20-1
logging of, 12-8B
resource limits for, 12-10
tasks, 12-3
user identity problems of, 12-6

remote tasking, 12-1
remote-file programs, in COMS, 9-13
REMOTE USER entry, in USERDATAFILE

and remote processes, 12-6
and remote system commands, 12-11

REMOVE statement, in WFL
privileged status of, 5-12

REQUIRES FETCH message, 3-27
RERUN statement, in WFL, 11-19

entering at ODT, 3-16
source~ for submitting, 3-25

resetting an event
after a wait, 16-10
directly, 16-9

RESIDENT file attribute, 6-12
RESOURCE task attribute, inheritance of,

2-24
resource usage

limits
and job queues, 4-4
for remote processes, 12-10
inheritance in process family, 2-24

measuring programmatically, 7-5
RESTART (Restart Jobs) system command,

11-4
restart messages, 11-20
RESTART task attribute, 11-21
RESTARTED task attribute, 11-2
restarting jobs and tasks, 11-1
RESTRICT (Set Restrictions) system

command, 5-6
security administrator status, 5-13

Index-18

RESUME command in COMS, effect on
tanking, 9-14

resuming processes, 6-11
reusing task variables, 6-11
RM (Remove) system command, 19-18

sources for submitting, 3-25
RP (Resident Program) system command

and object code file privileges, 8-4
RPG

port files in, 19-2
symbolic dumps for, 10-16B
tasking capabilities of, 4-28

RSVP messages
and remote processes, 12-10

and data specifications, 12-4
display in CANDE sessions, 3-5
display in MARC sessions, 3-10
DUP LIBRARY message, 19-18
language displayed in, 9-15
NO FILE message

and AUTORESTORE task attribute,
9-6

and FA command, 9-3
and ODT files, 3-19
during library linkage, 18-12

REQUIRES FETCH message, 3-27
WAITING ON AN EVENT message, 6-7
WAITING ON message

and EXCLUSIVE file attribute, 19-19
RUN screen, in MARC, 3-9
RUN statement, (See ??RUN (Run Code

s

File) system command)
at the ODT, 3-17
in ALGOL, 4-15
in CANDE, 3-1
in COBOL74, 4-20
in MARC, 3-9
inWFL,4-8

entering at ODT, 3-16
sources for submitting, 3-22

S (Scheduled Mix Entries) system command,
6-5

and Automatic Display mode, 3-18
sources for submitting, 3-23

S-DS termination message, 10-3
save memory, 8-2

restricting use of, 8-7
SA VEBACKUPFILE print attribute

86000494-010

prevents removal of backup files, 9-9
SA VEMEMORYLIMIT job queue attribute,

4-6
SA VEMEMORYLIMIT task attribute, 8-8

and program dumps, 10-17
inheritance in process family, 2-24

SB (Substitute Backup) system command,
9-8

SCHEDULE command, in CANDE, 3-6
SCHEDULED

stack state in Y display, 6-6
STATUS task attribute value, 6-3
WFL task state value, 6-4

scheduled processes, 6-3
effect of task attributes, 8-4
immunity of control programs, 7-3
preventing scheduling, 6-11

schemata, in Pascal, 17-35
scope of declarations, 15-1

affected by parameter passing, 17-1
SECAD (Security Administrator) system

command, 5-13
SECADMIN

system option, 5-13
usercode attribute, 5-13

SECADMIN option, ofMP system command,
5-4C

SECOPT (Security Options) system
command, and tape security, 5-9

sections, in COBOL74, 1-7
security, 5-6, (See also InfoGuard)

compiler status, 5-13
file restrictions, 5-7
for shared logical files, 19-9
MCS status, 5-14
nonprivileged status, 5-7
nonusercoded status, 5-10
object code file privileges, 5-4C
ODT status, 5-12
of libraries, 18-45
privileged status, 5-9
security administrator status, 5-13
SYSTEMUSER status, 5-13
tasking status, 5-17

security administrator status, 5-13
of an object code file, 5-4C

transparency, 5-5
security administrator transparent status,

5-5
SECURITY statement, in WFL

privileged status o~ 5-12
SECURITYGUARD file attribute, 5-8

86000494-010

and privileged processes, 5-9
SECURITYTYPE file attribute, 5-8

and privileged processes, 5-9
SECURITYUSE file attribute, 5-8

Index

and privileged processes, 5-9
SELECTED stack state, 6-6
SENSITIVEDATA file attribute, 19-17
separate programs

inclusion properties o~ 2-1
initiating, 1-6

SERIALNO attribute, of tape files, 6-13
and unlabeled tapes, 6-14

SERIALNUMBER operating system option,
6-13

session
in CANDE, 3-1
in MARC, 3-8

session numbers, 5-1
andCANDE

inheritance by JOBNUMBER, 3-13
inCANDE, 3-1

in system command displays, 3-6
inheritance by JOBNUMBER, 3-4

in MARC, 3-8
in system command displays, 3-12

SET statement, in ALGOL, 16-9
SETSTATUS function, in DCALGOL

and privileged status, 5-9
and security administrator status, 5-13
and SYSTEMUSER status, 5-13

SETUPINTERCOM function, in DCALGOL
and tasking status, 5-17

shared files, 19-1
. SHAREDBYALL library sharing option, 18-4
SHAREDBYRUNUNIT library sharing

option, 18-4
SHARING option, for libraries, 18-4

DONTCARE, 18-5
PRIVATE, 18-4
SHAREDBYALL, 18-4
SHAREDBYRUNUNIT, 18-4

siblings, 2-17
simple array parameters, 18-38

in tasking, 17-33
simple blocks, 1-7

compared to other ALGOL program
structures, 4-14

simple expressions
and ca1l-by-name parameters, 17-4
and ca1l-by-reference parameters, 17-5

SL (Support Library) system command,
18-10

Index-19

Index

SNTX termination message, 10-2
SO command, in CANDE, 3-5
SORT facility, and checkpoints, 11-10C
source files, 1-1
SOURCEKIND task attribute, 5-6

of processes run from ODTs, 3-19
SOURCESTATION task attribute

and CANDE sessions, 3-4
and MARC sessions, 3-13
in CANDE, 3-7
of MARC sessions

automatically assigned, 3-15
SQ (Show Queue) system command, 3-22
ST (Stop) system command, 6-11

and WFLjob restarts, 11-2
sources for submitting, 3-24

STACK EXTENDED log entry, 8-6
stack number, 5-2

in EVENT_STATUS result, 16-7
STACK OVERFLOW error message, 8-7
STACKHISTORY task attribute, 10-8
STACKLIMIT task attribute

and program dumps, 10-17
and stack overflows, 8-7

stacks, (See process stacks)
STACKSIZE task attribute

and stack stretches, 8-6
effect on process scheduling, 8-5
inheritance to internal processes, 2-1

START statement
in CANDE, 3-3
in MARC, 3-9, 3-11
inWFL

entering at ODT, 3-16
privileged status of, 5-12

sources for submitting, 3-22
STARTTIME (Start Time) system command,

4-7
sources for submitting, 3-22

STARTTIME task attribute, 4-7
in CANDE, 3-4

in WFL command, 34
in MARC, 3-10

starvation of events, 16-19
STATION task attribute

and CANDE sessions, 3-4
automatically assigned, 3-7

and MARC sessions, 3-13
automatically assigned, 3-15

station transfer, 12-5
status

process status, 6-1

Index-20

security status, (See security)
STATUS task attribute, 6-3

. using to prevent ALGOL critical block
. exits, 2-10

using to prevent COBOL74 critical block
exits, 2-11

STOPPED task state value, in WFL, 6-4
STOPPOINT task attribute, 10-11
subfiles, 19-2

indexes, 19-2
SUBROUTINE, in FORTRAN, 1-7
SUMLOG, 10-4
SUPERUSER capability, 12-7
support libraries, 18-9
SUPPRESSED value

JOBSUMMARY task attribute, 10-5
SUPPRESSWARNING task attribute, 9-14
SUSPENDED process status, 6-3
suspended processes, 6-3

preventing suspension, 6-12
suspending and resuming, 6-11

SW1 through SW8 task attributes, 14-1
symbolic dumps, 10-16B
synchronization

of file access by multiple processes, 19-8
using events for, 16-1 .

synchronous processes, 2-2
system commands

entering from CANDE, 3-5
entering from MARC, 3-11
equivalents in CANDE, MARC, and ODT,

3-20
system files, security status of, 5-9

and INFOGUARDSUPPORT file, 5-9
system libraries, 18-46

security attributes of, 18-47
system log, 10-4

and process history, 10-6
system options, (See operating system

options)
SYSTEM/MARC/COMMANDER, 3-14
SYSTEMFILE library attribute, 18-47
SYSTEMUSER status, 5-13

and remote processes, 12-7
and remote system commands, 12-11

T

TAB, (See task attribute block (TAB))
T ADS task attribute, inheritance of, 2-1
tank files, 9-12

86000494-010

tanking mode, for remote files, 9-12
tape files

and serial numbers, 6-13
security, 5-9

volume changes and ODTstatus, 5-12
volume changes by nonprivileged

processes, 5-7
unlabeled, 6-13

TARGET task attribute, 14-1
task, 2-18
task attribute block (TAB), 8-2
task attributes, 1-2

Host Services support of, 12-14
inheritance

affected by process inclusion, 2-1
between processes, 1-4
from interactive sources, 1-3

interprocess communication using, 14-1
of a MARC session, 3-13
synonymous with process attributes, 2-18

TASK command, in MARC, 3-10
task equations, 1-3

in CANDE, 3-5
in MARC sessions, 3-13

task file, 10-16
of RPG processes, 10-16B·

task state expression, in WFL, 6-4,10-7
and compilations, 10-7

task variables, 1-4
effect on critical block definition, 2-10
reusing, 6-11
synonymous with process variables, 2-18

task window, in MARC, 3-12
TASKAITR screen, in MARC, 3-13
TASKFAULT statement, in WFL, 10-8
T ASKFILE task attribute

and program dumps, 10-16
tasking, 1-2

across multihost networks, 12 1
advantages of, 1-7

increasing application performance,
1-10

increasing programmer productivity, 1-8
reducing operator intervention, 1-8

basic concepts,· 1-1
history and diagnostics, 10-1
I/O usage controls, 9-1
interactive sources for, 3-1
interprocess relationships, 2-1
limitations of, 1-11
memory usage controls, 8-1
process identity, 5-1

86000494-010

process privileges, 5-1
process status monitoring, 6-1
processor usage controls, 7-1
programming languages for, 4-1
restarting processes, 11-1

tasking mode, in MARC, 3-8

Index

TASKING option, of MP system command,
5-4C

tasking parameters, 17-1
arrays, 17-32

dimensions and elements, 17-32
lower bounds, 17-33
passing to bound COBOL74

subprograms, 17-38
passing to Pascal, 17-34

matching types, 17-7
overview, 17-6
passing mode conflicts, 17-30

tasking status, 5-17
ofan object code file, 5-4C

transparency, 5-5
. tasking transparent status, 5-5

TASKINGIMESSAGE/HANDLER, 12-13
as exception task of remote task, 12-5

TASKING/STATE/CONTROLLER, 12-13
TASKPORT, 12-8B
TASKSTATUS screen, in MARC, 3-8, 3-10
TASKSTRING task attribute, 14-1
TASKV ALUE task attribute

and MARC, 3-9
in interprocess communication, 14-1
of compilations, 10-8

TASKVIEW screen, in MARC, 3-11
TASKW ARNINGS task attribute, 9-15
TCPIIP, (See Transmission Control

Protocol/Internet Protocol (TCP lIP»
TDIR (Tape Directory) system command,

3-17
TEMPFILELIMIT job queue attribute, 4-6
TEMPFILELIMIT task attribute, 9-6

and program dumps, 10-17
inheritance in process family, 2-24

TEMPFILEMBYTES task attribute, 9-7
templates, of libraries, (See library

templates)
temporary files, 19-17
temporary libraries, 18-3
TERM (Terminal) system command, (See

terminal usercodes)
effect on WFL jobs submitted from an

ODT, 3-18

Index-21

Index

effects on AT (At Remote Host) system
command, 12-11

effects on remote WFL jobs, 12-7
terminal communications, (See data

communications)
terminal usercodes, 12-7, 12-11

and nonusercoded status, 5-11
inherited from ODT, 3-18

TERMINATED process status, 6-3
termination

abnormal, 1-4
messages, 10-2

causing a process to terminate, 6-9
normal, 1-4

Test and Debug System (T ADS)
effect on code segment dictionaries, 8-4
TADS task attribute inheritance, 2-1

THAW (Thaw Frozen Library) system
command, 6-10

thawing a library, 6-10
thrashing, 8-2
thunks, 17-4

and COBOL74 programs, 4-20
effect on critical block definition, 2-10
never created for call-by-value parameters,

17-3
TI (Times) system co:nunand, 7-4

sources for submitting, 3-23
TITLE file attribute, 19-18

and file security, 5-8
and shared logical files, 19-8
default usercode for, 9-1

TITLE library attribute, 18-11
TO BE CONTINUED stack state, 6-6
TODISK program dump option, 10-14
TOPRINTER program dump option, 10-13
translation, (See localization)
Transmission Control Protoco1/Intemet

Protocol (TCP/IP), 19-1
transparent object code file privileges, 5-5
TRUSTED library attribute, 18-46
typed procedures

u

and libraries, 18-18
in ALGOL, 4-14

U -DS termination message, 10-3
UIP-DLPs, 3-16
UL (Unlabeled) system command, 6-14

sources for submitting, 3-25

Index-22

unbounded array parameters, 18-38
in tasking, 17-33

UNCONDITIONAL value
JOBSUMMARY task attribute, 10-5

UNITNO file attribute
. and ODT files, 3-20
and tape files, 6-14

UNKNOWN FILE/STATION error message,
3-19

UNKNOWN HOST SPECIFIED error
message, 12-2

UNLOCK statement, in COBOL74, 16-4
U nn-DS termination message, 10-3
unrelated processes, 2-17
UP LEVEL ATTACH error message, 16-15
UP LEVEL TASK ASSIGNMENT error

message, 2-22
UQ (Unit Queue) system command, 4-6
USER entry, in USERDATAFILE

and remote processes, 12-6
and remote system commands, 12-11

USER ERROR - NO USERCODE error
message, 12-8

user processes, and libraries, 18-1
user programs, (See library user programs)
USER SAVE MEMORY LIMIT EXCEEDED

error message, 8-8
USER statement, in WFL, 5-10
USERBACKUPNAME file attribute, 9-11
USERCODE task attribute

and CANDE sessions, 3-4
and MARC sessions, 3-13
supplies default usercode for files, 9-1

USERCODEDBACKUP security option, 9-8
usercodes

and file security, 5-7
attributes

and CANDE sessions, 3-4
and MARC sessions, 3-13
CANDEGETMSG,3-5

creating, 5-9
host, (See host usercodes)
local alias, 12-7
nonusercoded processes, 5-10
of an ODT, 12-7
of remote processes, 12-6
privileged status, 5-10
terminal, (See terminal usercodes)

USERDATA function, in DCALGOL, 5-10
USERDATAFILE, protected status of, 5-10
USING clause

86000494-010

and COBOL(68) or COBOL74 library
parameters, 18-7

utilities
initiating from ODT, 3-17
initiating in CANDE, 3-3
initiating in MARC, 3-9

UTILITY command, in CANDE, 3-2
UTYP parameter

CALLCHECKPOINT procedure, 11-8

v
virtual memory, 8-1
VOLUME statement, in WFL, privileged

status of, 5-12

w
W (Waiting Mix Entries) system command,

6-5
and Automatic Display mode, 3-18
and FETCH messages, 3-27
prompts the operator, 6-12
sources for submitting, 3-23

WAITING ON AN EVENT stack state, 6-7
waiting on events, 16-10

for time period, 16-10
multiple events, 16-11
preventing starvation problems when,

16-19
with reset, 16-10

WAITING ON message, 19-19
W AITLIMIT job queue attribute, 4-6
W AITLIMIT task attribute, 16-10

and program dumps, 10-17
inheritance in process family, 2-24

WARNINGS file attribute, 9-15
WFL, (See Work Flow Language (WFL»
WFLcommand

in CANDE, 3-4
in MARC, 3-10

and TASKSTATUS screen, 3-11
sources for submitting, 3-22

WFL compiler, 4-2B
WFL input, 4-1
WFLjob, (See Work Flow Language (WFL»
WFLSUPPORT system library, 4-2B
Work Flow Language (WF~), 4-1

accessing task attributes in, 4-10

86000494-010

and A-DS termination type, 10-2
andjob queues, 4-3
and Q-DS termination message, 10-3
ARCHIVE command

Index

and nonprivileged processes, 5-7
and privileged processes, 5-9

communication through global objects,
15-2

critical blocks, 2-11
initiating compilations in, 4-9
initiating dependent processes in, 4-8
initiating interactive processes in, 4-9
initiating utilities in, 4-9
instruction blocks in, 3-26
interprocess communication in, 4-11
jobs written in, 2-19
networks, transferringjobs across, 12-2
PRINT statement, 9-10
responding to error conditions in, 4-11
restarting

automatically, 11-1
disk resource control effects, 11-4
job side effects, 11-2
manually, 11-4
reasons for failure, 11-3
task side effects, 11-2

structuring jobs written in, 4-8
submitting jobs, 4-1

from ALGOL, 4-15
from an ODT, 3-16
from CANDE, 3-3
from COBOL74, 4-22
from FORTRAN, 4-28
from MARC, 3-9
from RPG, 4-28
from WFL, 4-10

task state expression, 6-4
using file equations in, 4-11

working set, 8-5
write-protected disks

retention of backup files on, 9-9

v
Y (Status Interrogate) system command

and CANDE sessions, 3-6
and checkpoint status, 11-17
and MARC sessions, 3-12
and RSVP messages, 6-7
sources for submitting, 3-22, 3-:-23
stack states displayed, 6-6

Index-23

Index

YOURHOST file attribute, 19-2
YOURNAME file attribute, 19-2

z
ZIP statement

in ALGOL, 4-15
in FORTRAN, 4-28
in RPG, 4-28

?-DS termination message, 10-3
??RUN (Run Code File) system command,

3-17,3-22
??SECAD (Security Administrator) system

command,5-13
_copy_to j>tr _ t procedure, in C, 18-65
_free _ t procedure, in C, 18-60
_heap_to j>tr _ t procedure, in C, 18-22,

18-60
_ maIloc _ t procedure, in C, 18-60, 18-65

Index-24 86000494-010

• UNISYS Help Us To Help You
Publication Title

Form Number

Unisys Corporation is interested in your comments and suggestions reguarding this manual. We will use
them to improve the Quality of your Product Information. Please check type of suggestion:

o Addition D Deletion o Revision o Error

Comments:

Name Telephone number
()

Title Company

Address

City State Zip code

Xau!I pauop 3uole lflO
r--------------------------

adel aldelS lON 00 aseald adel

aJaH Plo.:l

r------------rrrr----I-~:--:·
I ~M

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 817 DETROIT, MI

POSTAGE WILL BE PAID BY ADDRESSEE

UNISYS CORPORAnON
ATTN: PUBLICATIONS
25725 JERONIMO ROAD
MISSION VIEJO, CA 92691·9826

11.1"1.1.1.11'11.111111111.1 •• 111111.1.1.111.111111

111111111~llllli 11111111 ~ 1m II ~ I~ 11I111111 ~ III ~ I11I11
86000494-000

